تعداد نشریات | 44 |
تعداد شمارهها | 1,323 |
تعداد مقالات | 16,270 |
تعداد مشاهده مقاله | 52,954,370 |
تعداد دریافت فایل اصل مقاله | 15,624,981 |
حداکثرسازی گذردهی در شبکه های رادیوشناختی MIMO با رله SWIPT DF و اطلاعات ناقص CSI | ||
مجله مهندسی برق دانشگاه تبریز | ||
مقاله 12، دوره 54، شماره 1 - شماره پیاپی 107، اردیبهشت 1403، صفحه 121-131 اصل مقاله (958.8 K) | ||
نوع مقاله: علمی-پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/tjee.2023.16969 | ||
نویسندگان | ||
مهلا محمدی؛ سید مهدی حسینی اندارگلی* | ||
Department of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran. | ||
چکیده | ||
ما مسئله به حداکثر رساندن گذردهی را برای ارسال downlink در شبکههای رادیو شناختی به کمک رله DF با قابلیت ارسال اطلاعات بیسیم و برداشت انرژی همزمان (SWIPT) بررسی میکنیم. در این شبکه مفروض، تجهیزات رله چند ورودی-چند خروجی (MIMO) و کاربر ثانویه (SU) طراحی شدهاند تا هر دو برداشت انرژی از سیگنال فرکانس رادیویی (RF) و SWIPT را انجام دهند. علاوه بر این، ایستگاه پایه شناختی (CBS) تنها از طریق رله MIMO با SU ارتباط برقرار می کند. بر اساس مدل شبکه در نظر گرفته شده، چندین قید ترکیبی راه حل مسئله اصلی را پیچیده می کند. بنابراین در این مقاله، دستورالعملهای ابتکاری را در چارچوب بهینهسازی محدب برای مدیریت این پیچیدگی اعمال میکنیم. ابتدا مسئله حداکثرسازی گذردهی در هر دو طرف رله را جداگانه در نظر بگیرید. دوم، هر طرف برای حل بهینه مسئله پیچیده با اتخاذ استراتژی هایی برای حل زیرمسائل پیش می رود. در نهایت، این راهحلهای بهینه با پیشنهاد یک الگوریتم تخصیص توان تکراری ابتکاری که قیدهای ترکیبی را با زمانهای همگرایی کم برآورده میکند، ترکیب میشوند. عملکرد الگوریتم پیشنهادی بهینه (OPA) در مقابل الگوریتمهای معیار از طریق نتایج عددی بر روی بهینگی، زمان همگرایی، انطباق قیود و اطلاعات ناقص وضعیت کانال (CSI) بر روی کانال CBS تا کاربر اولیه ارزیابی میشود | ||
کلیدواژهها | ||
حداکثرسازی گذردهی؛ رادیوشناختی؛ رله کدگشایی و باز ارسال؛ انتقال اطلاعات و برداشت انرژی همزمان؛ چند ورودی-چند خروجی | ||
مراجع | ||
[1] Xu, G. Gui, H. Gacanin, F. Adachi, “A survey on resource allocation for 5G heterogeneous networks: Current research, future trends, and challenges”, IEEE Communications Surveys & Tutorials, vol. 23, no. 2, pp. 668-695, 2021. [2] C. Liang, Y. Zeng, E.C. Peh, A.T. Hoang, “Sensing-throughput tradeoff for cognitive radio networks”, IEEE transactions on Wireless Communications, vol. 74, no. 4, pp. 1326-1337, 2008. [3] Hasegawa, H. Hirai, K. Nagano, H. Harada, K. Aihara, “Optimization for centralized and decentralized cognitive radio networks”, Proceedings of the IEEE, vol. 102, no. 4, pp. 574-584, 2014. [4] Na, Y. Wang, X. Li, J. Xia, X. Liu, M. Xiong, W. Lu, “Subcarrier allocation based simultaneous wireless information and power transfer algorithm in 5G cooperative OFDM communication systems”, Physical Communication, vol. 29, pp. 164-170, 2018. [5] Lu, P. Wang, D. Niyato, E. Hossain, “Dynamic spectrum access in cognitive radio networks with RF energy harvesting”, IEEE Wireless Communications, vol. 21, no. 3, pp. 102-110, 2014. [6] Park, H. Kim, D. Hong, “Optimization for centralized and decentralized cognitive radio networks”, Proceedings of the IEEE, vol. 12, no. 3, pp. 1386-1397, 2013. [7] Zhang, C.K. Ho, “MIMO broadcasting for simultaneous wireless information and power transfer”, IEEE Transactions on Wireless Communications, vol. 12, no. 5, pp. 1989-2001, 2013. [8] Benkhelifa, A.S. Salem, M.S. Alouini, “Rate maximization in MIMO decode-and-forward communications with an EH relay and possibly imperfect CSI”, IEEE Transactions on Communications, vol. 64, no. 11, pp. 4534-4549, 2016. [9] Yan, Y. Liu, “A dynamic SWIPT approach for cooperative cognitive radio networks”, IEEE Transactions on Vehicular Technology, vol. 66, no. 12, pp. 11122-11136, 2017. [10] Chatterjee, S.P. Maity, T. Acharya, “Energy-spectrum efficiency trade-off in energy harvesting cooperative cognitive radio networks”, IEEE Transactions on Cognitive Communications and Networking, vol. 5, no. 2, pp. 295-303, 2019. [11] Tse, P. Viswanath, “Fundamentals of wireless communication”, Cambridge university press, 2005. [12] Mishra, G.C. Alexandropoulos, “Jointly optimal spatial channel assignment and power allocation for MIMO SWIPT systems”, IEEE Wireless Communications Letters, vol. 7, no. 2, pp. 214-217, 2017. [13] Soleimanpour-Moghadam, S. Talebi, “Relay selection and power allocation for energy-efficient cooperative cognitive radio networks”, Physical Communication, vol. 28, pp. 1-10, 2018. [14] Huang, W. Tu, “A high-throughput wireless-powered relay network with joint time and power allocations”, Computer Networks, vol. 160, pp. 65-76, 2019. [15] Wang, G. Wang, B. Li, Z. Lin, H. Wang, G. Chen, “Optimal power splitting for MIMO SWIPT relaying systems with direct link in IoT networks”, Physical Communication, vol. 43, pp. 101169, 2020. [16] Gautam, E. Lagunas, S. Chatzinotas, B. Ottersten, “Relay selection and resource allocation for SWIPT in multi-user OFDMA systems”, IEEE Transactions on Wireless Communications, vol. 18, no. 5, pp. 2493-2508, 2019. [17] Malik, M. Vu, “Optimal transmission using a self-sustained relay in a full-duplex MIMO system”, IEEE Journal on Selected Areas in Communications, vol. 37, no. 2, pp. 374-390, 2018. [18] Li, H. Cao, Y. Rong, T. Su, G. Yang, Z. He, “Transceiver optimization for DF MIMO relay systems with a wireless powered relay node”, IEEE Access, vol. 7, pp. 56904-56919, 2019. [19] Benkhelifa, A.S. Salem, M.S. Alouini, “Sum-rate enhancement in multiuser MIMO decode-and-forward relay broadcasting channel with energy harvesting relays”, IEEE Journal on Selected Areas in Communications, vol. 37, no. 12, pp. 3675-3684, 2016. [20] Golipour, R. Ghazalian, S.M.H Andargoli, “Throughput maximization method for SWIPT DF multi-relaying network with low computational complexity”, Physical Communication, vol. 47, pp. 101378, 2021. [21] Shirvani Moghaddam, “Outage analysis of energy harvested relay-aided device-to-device communications in Nakagami channel”, Journal of Communications Software and Systems, vol. 14, no. 4, pp. 302-311, 2018. [22] H. Abd El-Malek, M.A. Aboulhassan, M.A. Abdou, “Power allocation scheme and performance analysis for multiuser underlay full-duplex cognitive radio networks with energy harvesting”, IEEE Access, vol. 6, pp. 59031-59042, 2018. [23] Lee, R. Zhang, “Cognitive wireless powered network: Spectrum sharing models and throughput maximization”, IEEE Transactions on Cognitive Communications and Networking, vol. 1, no. 3, pp. 335-346, 2015. [24] Kim, H. Lee, C. Song, T. Oh, I. Lee, “Sum throughput maximization for multi-user MIMO cognitive wireless powered communication networks”, IEEE Transactions on Wireless Communications, vol. 16, no. 2, pp. 913-923, 2016. [25] Askari, V.T. Vakili, “Robust Beamforming and Power Allocation in CR MISO Networks with SWIPT to Maximize the Minimum Achievable Rate”, Wireless Personal Communications, vol. 106, no. 2, pp. 927-954, 2019. [26] Mohammadi, S.M.H. Andargoli, “Sum throughput maximization for downlink MIMO-OFDMA based cognitive radio networks in spectrum overlay model”, In 8th International Symposium on Telecommunications (IST), September 2016, Iran, Tehran, pp. 72-77. [27] Mohammadi, S.M.H. Andargoli, “Power optimization and subcarrier allocation for downlink MIMO-OFDMA based cognitive radio networks”, Wireless Networks, vol. 24, no. 6, pp. 2221-2235, 2018. [28] Mohammadi, S.M.H. Andargoli, “Resource allocation algorithm for downlink MIMO‐OFDMA based cognitive radio networks in spectrum underlay scenario”, IET Communications, vol. 14, no. 11, pp. 1811-1820, 2020. [29] Eidzadeh, R. Ghazizadeh, M. Hadi, “Joint resource allocation and position optimization in NOMA-based multi-UAV wireless communication networks”, Tabriz Journal of Electrical Engineering, vol. 51, no. 3, pp. 327-336, 2022. [30] Adli Mehr, J. Musevi Niya, N. Akar, “A multi-rate queue management for delay-constrained non-orthogonal multiple access (NOMA) based secure cognitive radio network”, Tabriz Journal of Electrical Engineering, vol. 51, no. 2, pp. 149-159, 2021. [31] M. Hoang, X.N. Tran, N. Thanh, L.T. Dung, “Performance analysis of MIMO SWIPT relay network with imperfect CSI”, Mobile Networks and Applications, vol. 24, pp. 630-642, 2019. [32] Alibeigi, S.S. Moghaddam, “Sum-rate optimization constrained by consumed power for multi-antenna non-regenerative relay network”, International Journal of Sensors Wireless Communications and Control, vol. 10, no. 2, pp. 143-152, 2020. [33] Wang, J. Zhang, A. Host-Madsen, “On the capacity of MIMO relay channels”, IEEE Transactions on Information theory, vol. 51, no. 1, pp. 29-43, 2005. [34] Lu, G.Y. Li, A.L. Swindlehurst, A. Ashikhmin, R. Zhang, “An overview of massive MIMO: Benefits and challenges”, IEEE journal of selected topics in signal processing, vol. 8, no. 5, pp. 742-758, 2014. [35] Simoens, O. Muñoz-Medina, J. Vidal, A. Del Coso, “On the Gaussian MIMO relay channel with full channel state information”, IEEE Transactions on Signal Processing, vol. 57, no. 9, pp. 3588-3599, 2009. [36] Boyd, S.P. Boyd, L. Vandenberghe, “Convex optimization”, Cambridge university press, 2004. | ||
آمار تعداد مشاهده مقاله: 208 تعداد دریافت فایل اصل مقاله: 246 |