تعداد نشریات | 44 |
تعداد شمارهها | 1,298 |
تعداد مقالات | 15,883 |
تعداد مشاهده مقاله | 52,116,576 |
تعداد دریافت فایل اصل مقاله | 14,887,928 |
تأثیر مواد نفتی و هوادیدگی فیزیکی بر آب گریزی و ویژگی های هیدرولیکی دو خاک لوم شنی و لوم رسی | ||
دانش آب و خاک | ||
مقاله 9، دوره 34، شماره 2، تیر 1403، صفحه 136-155 اصل مقاله (1.26 M) | ||
شناسه دیجیتال (DOI): 10.22034/ws.2023.55097.2515 | ||
نویسندگان | ||
اعظم مرادی1؛ محمدرضا مصدقی* 2؛ الهام چاوشی1؛ آزاده صفادوست3؛ محسن سلیمانی4 | ||
1گروه علوم خاک، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)، اصفهان، ایران | ||
2گروه علوم خاک، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان | ||
3گروه علوم خاک، دانشکده کشاورزی، دانشگاه بوعلیسینا، همدان، ایران | ||
4دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان، اصفهان، ایران | ||
چکیده | ||
در این پژوهش تأثیر مواد نفتی و هوادیدگی فیزیکی بر آبگریزی و ویژگیهای هیدرولیکی دو خاک لوم شنی و لوم رسی بررسی شد. خاکها با سه سطح مواد نفتی (0، 5/0 و 1%) و با دو شرایط ساختمانی خاک (دستخورده و هوادیده فیزیکی) تیمار شدند. سپس آبگریزی خاک به روش زمان نفوذ قطره آب (WDPT)، و منحنی مشخصه رطوبتی و هدایت هیدرولیکی اشباع خاک در تیمارهای آزمایشی اندازهگیری شد. دادههای منحنی مشخصه رطوبتی خاک با معادله ونگنوختن مدلسازی شد. نتایج نشان داد به دلیل افزایش آبگریزی (WDPT) در اثر افزودن مواد نفتی، نگهداشت آب خاک کاهش یافت. با افزایش درجه آبگریزی خاک (ناشی از افزودن نفت)، هدایت هیدرولیکی اشباع (K_S) (از مقدار 98/7 در شاهد به cm h-1 64/5 در تیمار 1%) و رطوبت اشباع (θ_s) (از مقدار 547/0 در شاهد به cm3 cm-3 457/0 در تیمار 1%) و رطوبت باقیمانده (θ_r) (از مقدار 122/0 در شاهد به cm3 cm-3 112/0 در تیمار 1%) کاهش معنیداری یافته و پارامترهای مقیاس () (از مقدار 130/0 در شاهد به cm-1 240/0 در تیمار 1%) و شکل (n) (از مقدار 36/1 در شاهد به 56/1 در تیمار 1%) افزایش معنیداری یافتند. هیدروکربنهای نفتی سبب کاهش آب فراهم خاک برای گیاه (از مقدار 084/0 در شاهد به cm3 cm-3 049/0 در تیمار 1%) شدند. درجه آبگریزی (WDPT) در خاک هوادیده فیزیکی (s 2/30) نسبت به خاک دستخورده (s 9/23) به طور معنیداری بیشتر بود. نتایج این پژوهش در مدیریت خاکهای آلوده به نفت در شرایط مختلف (بافت و ساختمان خاک) قابل استفاده خواهد بود. | ||
کلیدواژهها | ||
آبگریزی خاک؛ پارامتر شکل؛ پارامتر مقیاس؛ مدل ونگنوختن؛ منحنی مشخصه رطوبتی خاک | ||
مراجع | ||
Adams RH, Osorio FG and Cruz JZ, 2008. Water repellency in oil contaminated sandy and clayey soils. International Journal of Environmental Science and Technology 5: 445–454.
Arcenegui V, Mataix-Solera J, Gueuero C, Zomoza R, Malaix-Beneyto J and Garcia-Orenes F, 2008. Intermediate effects of wildfires on water repellency and aggregate stability in Mediterranean calcareous soils. Catena 74: 219–226.
Bauters TWJ, Steenhuis TS, Dicarlo DA, Nieber JL, Dekker LW, Ritsema CJ, Parlange JY and Haverkamp R 2000. Physics of water repellent soils. Journal of Hydrology 231-232 : 233–243.
Black GR, 1986. Bulk density. Pp. 374–380 In: Klute A, (Ed.) Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. American Society of Agronomy/Soil Science Society of America, Agronomy Monograph 9, 2nd Ed., Madison, WI.
Blackwell PS, 2000. Management of water repellency in Australia, and risks associated with preferential flow, pesticide concentration and leaching. Journal of Hydrology 231–232: 384–395.
Caravaca F and Rolda'n A, 2003. Assessing changes in physical and biological properties in a soil contaminated by oil sludges under semiarid Mediterranean conditions. Geoderma 117: 53–61.
Clement CR, 1966. A simple and reliable tension table. Soil Science 17: 133–135.
Clothier BE, 2004. Soil pores. Pp. 693–699 In: Chesworth W, (Ed.) Encyclopaedia of Soil Science. Springer, Dordrecht, The Netherlands.
DeBano FL, 1981. Water Repellent Soils: A State of the Art. US Department of Agriculture, Forest Service, General Technical, Report (PSW-46).
Dekker LW and Jungerius PD, 1990. Water repellency in the dunes with special reference to The Netherlands. Catena 18: 173–183.
Dexter AR, 2004a. Soil physical quality. Part I: Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma 120: 201–214.
Dexter AR, 2004b. Soil physical quality. Part III: Unsaturated hydraulic conductivity and general conclusions about S-theory. Geoderma 120: 227–239.
Diamanntopoulos E, Durner W, Reszkowska A and Bachmann J. 2013. Effect of soil water repellency on soil Hydraulic properties estimated under dynamic conditions. Journal of Hydrology 486: 175–186.
Doerr SH, Ritsema CJ, Dekker LW, Scott DF and Carter D, 2007. Water repellence of soils: new insights and emerging research needs. Hydrological Processes 21: 2223–2228.
Doerr SH, Shakesby RA and Walsh RPD, 2000. Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews 51(1–4): 33–65.
Durner W and Flühler H, 2005. Soil hydraulic properties. Pp. 1089–1102 In: Anderson. MG, McDonnell J, (Eds.) Encyclopedia of Hydrological Sciences. John Wiley & Sons, Chichester, UK.
Gee GW and Bauder JW, 1986. Particles size analysis. Pp. 383–411 In: Klute A, (Ed.), Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. American Society of Agronomy/Soil Science Society of America, Agronomy Monograph 9, 2nd Ed., Madison, WI.
Goebel MO, Bachmann J, Reichstein M and Janssens IA, 2011. Soil water repellency and its implications for organic matter decomposition- is there a link to extreme climatic events? Global Change Biology 17: 2640–2656.
Hewelke E and Gozdowski D, 2020. Hydrophysical properties of sandy clay contaminated by petroleum hydrocarbon. Environmental Science and Pollution Research 27: 9697–9706.
Hubbert KR, Busse M, Overby S, Shestak C and Gerrard R, 2015. Pile burning effects on soil water repellency, infiltration, and downslope water chemistry in the Lake Tahoe Basin, USA. Fire Ecology. 11: 100–118.
Kay BD and Angers DA, 1999. Soil structure. Pp: A229–A276 In: Handbook of Soil Science. Chapter 7. CRC Press, Boca Raton, pp: A229–A276.
Kermanpour M, 2014. Effect of petroleum on soil hydraulic properties, available water and and water repellency in Bakhtiardasht, Isfahan. Master's Thesis in Soil Science, College of Agriculture, Isfahan University of Technology. (In Persian with English abstract)
Kermanpour M and Mosaddeghi MR, 2014. Effect of petroleum pollution of water and soil on the stability and intensity of soil water repellency in Bakhtiardasht Plain. Journal of Soil Management 3(1): 51–43. (In Persian with English abstract)
Kermanpour M, Mosaddeghi MR, Afyuni M and Hajabassi MA, 2015. Effect of petroleum pollution on soil water repellency and structural stability in Bakhtiardasht Plain, Isfahan. Journal of Agricultural Sciences and Techniques and Natural Resources, Water and Soil Sciences 19(73): 139–149. (In Persian with English abstract)
Kirkham MB, 2005. Principles of Soil and Plant Water Relations. Elsevier Academic Press, 500 pp.
Klute A, 1986. Water retention: laboratory methods. Pp. 635–662 In: Klute A, (Ed.) Method of Soil Analysis. Part 1: Physical and Mineralogical Methods. American Society of Agronomy/Soil Science Society of America, Agronomy Monograph 9, 2nd Ed., Madison, WI.
Lal R and Shukla, MK, 2004. Principles of Soil Physics. Marcel Dekker, USA.
Lamparter A, Deurer M, Bachmann J and Duijnisveld WHM, 2006. Effect of subcritical hydrophobicity in a sandy soil on water infiltration and mobile water content. Journal of Plant Nutrition and Soil Science 169: 38–46.
Liu H, Ju Z, Bachmann J, Horton R and Ren T, 2012. Moisture-dependent wettability of artificial hydrophobic soils and its relevance for soil water desorption curves. Soil Science Society of America Journal 76: 342–349.
Moradi A, Mosaddeghi MR, Chavoshi E, Safadoust A and Soleimani M, 2019. Effect of crude oil-induced water repellency on transport of Escherichia coli and bromide through repacked and physically weathered soil columns. Environmental Pollution 255: 113230.
Marín-García DC, Adams RH and Hernández-Barajas R, 2016. Effect of crude petroleum on water repellency in a clayey alluvial soil. International Journal of Environmental Science and Technology 13: 55–64.
Newman ACD, and Thomasson AJ, 1979. Rothamsted studies of soil structure. III. Pore size distributions and shrinkage processes. Journal of Soil Science 30: 415–439.
Nourmahnad N, Tabatabei SH, Nouri Imamzadei MH and Ghorbani Dashtaki Sh, 2013. Determining the moisture curve and parameters of the Van Gnouchten equation in hydrophilic and hydrophobic soils due to heat. Soil and Water Sciences 27 (4): 573-582. (In Persian with English abstract)
Page AL, Miller RH and Keeney DR, 1986. Methods of soil Analysis. Part 2: Chemical and Microbiological Properties. American Society of Agronomy/Soil Science Society of America, Agronomy Monograph 9, 2nd Ed., Madison, WI.
Pagliai M, Rousseva S, Vignozzi N, Piovanelli C, Pellegrini S and Miclaus N, 1998. Tillage impact on soil quality – I. Soil porosity and related physical properties. Italian Journal of Agronomy 2: 11–20.
Pan F, Pachepsky Y, Jacques D, Guber A and Hill RL, 2012. Data assimilation with soil water content sensors and pedotransfer functions in soil water flow modeling. Soil Science Society of America Journal 76(3): 829–844.
Rahimkhani Y, 2012. Efficiency of moisture curve measured with pressure plate device for simulating water movement in hydrophobic soil. Master's Thesis. Faculty of Agriculture, Shahrekord University, Iran. (In Persian with English abstract)
Rhoades JD, 1996. Salinity electrical conductivity and total dissolved solid. Pp: 417–436 In: Page, AL, Somner, CE and Nelson PW, (Eds.) Methods of Soil Analysis. Part 3: Chemical Methods. American Society of Agronomy/Soil Science Society of America, Agronomy Monograph 9, 2nd Ed., Madison, WI.
Rowell DL, 1994. Soil Science: Methods and Applications. Longman Group, Harlow, 345 pp.
Roy J L and McGill WB, 2000. Investigation into mechanisms leading to the development, spread and persistence of soil water repellency following contamination by crude oil. Canadian Journal of Soil Science 80(4): 595–606. | ||
آمار تعداد مشاهده مقاله: 267 تعداد دریافت فایل اصل مقاله: 149 |