- [1] P. Agarwal, J. J. Nieto, M. Ruzhansky, and D. F. M. Torres, Analysis of Infectious Disease Problems (COVID-19) and Their Global Impact, Queen Mary University of London, London, UK, 2021.
- [2] F. Ahmed, N. Ahmed, C. Pissarides, and J. Stiglitz, Why inequality could spread COVID-19, The Lancet Regional Health, 5(5) (2020), E240.
- [3] M. Altaf Khan and A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alexandria Engineering Journal, 59(4) (2020), 2379–2389.
- [4] M. Amdouni, J. Alzabut, M. E. Samei, W. Sudsutad, and C. Thaiprayoon, A generalized approach of the GilpinAyala model with fractional derivatives under numerical simulation, Mathematics, 10(19) (2022), 3655.
- [5] S. M. Aydogan, D. Baleanu, H. Mohammadi, and S. Rezapour, On the mathematical model of Rabies by using the fractional Caputo-Fabrizio derivative, Advances in Difference Equations, 2020 (2020), 382.
- [6] I. A. Baba, U. W. Humphries, F. A. Rihan, and J. E. N´apoles Vald´es, Fractional–order modeling and control of COVID-19 with shedding effect, Axioms, 12 (2023), 321.
- [7] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Application, 1(2) (2015), 73–85.
- [8] K. Diethelm, The Analysis of Fractional Differential Equations, Springer, Berlin, Heidelberg, 2010.
- [9] E. F. Doungmo Goufo, Chaotic processes using the two-parameter derivative with non-singular and non-local kernel: Basic theory and applications, Chaos, 26(8) (2016), 084305.
- [10] E. F. Doungmo Goufo and A. Atangana, Analytical and numerical schemes for a derivative with filtering property and no singular kernel with applications to diffusion, The European Physical Journal Plus, 131 (2016), 269.
- [11] A. K. Golmankhaneh, I. Tejado, H. Sevli, and J. E. N´apoles Vald´es, On initial value problems of fractal delay equations, Applied Mathematics and Computation, 449 (2023), 127980.
- [12] T. Guo, Q. Shen, W. Guo, W. He, J. Li, Y. Zhang, Y. Wang, Z. Zhou, D. Deng, X. Ouyang, Z. Xiang, W. Jiang, H. Luo, P. Chen, and H. Peng, Clinical characteristics of Elderly patients with COVID-19 in Hunan province, China: a multicenter, retrospective study, Gerontology, 66(5) (2020), 467–475.
- [13] Z. Hu, C. Song, C. Xu, G. Jin, Y. Chen, X. Xu, H. Ma, W. Chen, Y. Lin, Y. Zheng, J. Wang, Z. Hu, Y. Yi, and H. Shen, Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China, Sci. China Life Sci., 63(5) (2020), 706–711.
- [14] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, and B. Cao, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, 395(10223) (2020), 497–506.
- [15] D. S. Hui, E. I. Azhar, T. A. Madani, F. Ntoumi, R. Kock, O. Dar, G. Ippolito, T. D. Mchugh, Z. A. Memish, C. Drosten, A. Zumla, and E. Petersen, The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China, International journal of infectious diseases, 91 (2020), 264–266.
- [16] M. Jakovljevic, S. Bjedov, N. Jaksic, and I. Jakovljevic, COVID-19 pandemia and public and global mental health from the perspective of global health securit, Psychiatr Danub, 32(1) (2020), 6–14.
- [17] M. K. A. Kaabar, V. Kalvandi, N. Eghbali, M. E. Samei, Z. Siri, and F. Mart´ınez, Generalized Mittag-LefflerHyers-Ulam stability of a quadratic fractional integral equation, Nonlinear Engineering, 10 (2021), 414–427.
- [18] A. A. Kilbas, H. M.Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204, Elsevier, 2006.
- [19] M. Lipsitch, D. L. Swerdlow, and L. Finelli, Defining the epidemiology of Covid-19 studies needed, New England journal of medicine, 382(13) (2020), 1194–1196.
- [20] H. Mohammadi, S. Kumar, S. Rezapour, and S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Solitons & Fractals, 144 (2020), 110668.
- [21] H. Nishiura, T. Kobayashi, T. Miyama, A. Suzuki, S. M. Jung, K. Hayashi, R. Kinoshita, Y. Yang, B. Yuan, A. R. Akhmetzhanov, and N. M. Linton, Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19), International journal of infectious diseases, 94 (2020), 154–155.
- [22] R. Qesmi and A. Hammoumi, Lifting lockdown control measure assessment: From finite to infinite-dimensional epidemic models for COVID-19, arXiv, 2021 (2021).
- [23] S. Rezapour and H. Mohammadi, A study on the AH1N1/09 influenza transmission model with the fractional Caputo-Fabrizio derivative, Advances in Difference Equations, 2020 (2020), 488.
- [24] S. Rezapour, H. Mohammadi, and M. E. Samei, SEIR epidemic model for Covid-19 transmission by caputo derivative of fractional order, Advances in Difference Equations, 2020 (2020), 490.
- [25] M. E. Samei, R. Ghaffari, S. W. Yao, M. K. A. Kaabar, F. Mart´ınez, and M. Inc, Existence of solutions for a singular fractional q−differential equations under Riemann–Liouville integral boundary condition, Symmetry, 13 (2021), 135.
- [26] M. Vajdy, Induction and maintenance of long-term immunological memory following infection or vaccination, Frontiers in immunology, 10 (2019), 2658.
- [27] D. Wang, B. Hu, C. Hu, F. Zhu, X. Liu, J. Zhang, B. Wang, H. Xiang, Z. Cheng, Y. Xiong, Y. Zhao, Y. Li, X. Wang, and Z. Peng, Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in wuhan, china, JAMA Network, 323(11) (2020), 1061–1069.
- [28] X. Wang, A. Berhail, N. Tabouche, M. M. Matar, M. E. Samei, M. K. A. Kaabar, and X. G. Yue, A novel investigation of non-periodic snap bvp in the G-caputo sense, Axioms, 11 (2022) , 390.
- [29] P. Wintachai and K. Prathom, Stability analysis of SEIR model related to efficiency of vaccines for Covid-19 situation, Heliyon, 7(4) (2021) , e06812.
- [30] H. Zhou, J. Alzabut, S. Rezapour, M. E. Samei, Uniform persistence and almost periodic solutions of a nonautonomous patch occupancy model, Advances in Difference Equations, 2020 (2020), 143.
- [31] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G. Wu, G. F. Gao, and W. Tan, A novel coronavirus from patients with pneumonia in China 2019, New England Journal of Medicine, 382(8) (2020), 727–733.
|