- [1] X. Cabr´e, E. Fontich, and R. De la Llave, The parameterization method for invariant manifolds I: manifolds associated to non-resonant subspaces, Indiana University mathematics journal, (2003), 283–328.
- [2] X. Cabr´e, E. Fontich, and R. De la Llave, The parameterization method for invariant manifolds II: regularity with respect to parameters, Indiana University mathematics journal, (2003), 329–360.
- [3] X. Cabr´e, E. Fontich, and R. De la Llave, The parameterization method for invariant manifolds III: overview and applications, Journal of Differential Equations, 218(2) (2005), 444-515.
- [4] M. Canadell and A. Haro,´ Parameterization method for computing quasi-periodic reducible normally hyperbolic invariant tori, In Advances in differential equations and applications, (2014), 85–94.
- [5] R. Castelli, JP. Lessard, and JD. Mireles James, Parameterization of invariant manifolds for periodic orbits I: Efficient numerics via the Floquet normal form, SIAM Journal on Applied Dynamical Systems, 14(1) (2015), 132–167.
- [6] JL. Figueras and A. Haro,´ Reliable computation of robust response tori on the verge of breakdown, SIAM Journal on Applied Dynamical Systems, 11(2) (2012), 597–628.
- [7] JL. Figueras and A. Haro,´ Triple collisions of invariant bundles, Discrete, Continuous Dynamical Systems-B, 18 (2013), 2069–2082.
- [8] JL. Figueras, M. Gameiro , JP. Lessard, and R. de la Llave, A framework for the numerical computation and a posteriori verification of invariant objects of evolution equations, SIAM Journal on Applied Dynamical Systems, 16(1) (2017), 687–728.
- [9] RA. Fisher, The wave of advance of advantageous genes, Annals of eugenics, 7(4) (1937), 355–369.
- [10] A. Haro and R. De la Llave,´ A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: rigorous results, Journal of Differential Equations, 228(2) (2006), 530–579.
- [11] A. Haro and R. De la Llave,´ A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: numerical algorithms, Discrete, Continuous Dynamical Systems-B, 6(6) (2006), 62–121.
- [12] A. Haro and R. De la Llave,´ A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: explorations and mechanisms for the breakdown of hyperbolicity, SIAM Journal on Applied Dynamical Systems, 6(1)(2007), 142–207.
- [13] A. Haro, M. Canadell, JL. Figueras , A. Luque , and JM. Mondelo,´ The parameterization method for invariant manifolds, Applied mathematical sciences, 195 (2016),1–95.
- [14] PE. Hydon, Symmetry methods for differential equations: a beginner’s guide, Cambridge University Press, (22) (2000).
- [15] B. Krauskopf, HM. Osinga, EJ. Doedel, ME. Henderson, J. Guckenheimer, A. Vladimirsky, M. Dellnitz, and O. Junge, A survey of methods for computing (un) stable manifolds of vector fields, International Journal of Bifurcation and Chaos, 15(3) (2005), 763–791.
- [16] JD. Mireles James and M. Murray, Chebyshev–Taylor parameterization of stable/unstable manifolds for periodic orbits: implementation and applications, International Journal of Bifurcation and Chaos, 27(14) (2017), 1730050.
- [17] PJ. Olver, Applications of Lie groups to differential equations, Springer Science, Business Media, 107 (1993).
- [18] C. Reinhardt and JM. James, Fourier–Taylor parameterization of unstable manifolds for parabolic partial differential equations: Formalism, implementation and rigorous validation, Indagationes Mathematicae, 30(1) (2019), 39-80.
- [19] AN. Timsina and JM. James, Parameterized stable/unstable manifolds for periodic solutions of implicitly defined dynamical systems, Chaos, Solitons & Fractals, 161 (2022), 112345.
|