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Abstract

This paper aims to develop a stochastic perturbation into SEIR (Susceptible-Exposed-Infected-Removed) epidemic

model including a saturated estimated incidence. A set of stochastic differential equations is used to study its
behavior, with the assumption that each population’s exposure to environmental unpredictability is represented

by noise terms. This kind of randomness is considerably more reasonable and realistic in the proposed model.

The current study has been viewed as strengthening the body of literature because there is less research on the
dynamics of this kind of model. We discussed the structure of all equilibriums’ existence and the dynamical

behavior of all the steady states. The fundamental replication number for the proposed method was used to

discuss the stability of every equilibrium point; if R0 < 1, the infected free equilibrium is resilient, and if R0 > 1,
the endemic equilibrium is resilient. The system’s value is primarily described by its ambient stochasticity,

which takes the form of Gaussian white noise. Additionally, the suggested model can offer helpful data for

comprehending, forecasting, and controlling the spread of various epidemics globally. Numerical simulations are
run for a hypothetical set of parameter values to back up our analytical conclusions.
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1. Introduction

Communicable diseases have a detrimental effect on people’s lives and constitute a risk to human health. Many
academics have used mathematical models to investigate the transmission of infectious diseases and their control
techniques. Kermack and McKendrick [10–12] introduced some current compartment models. Many scholars have
developed alternative infectious disease models based on these models, which incorporate modern computational tech-
niques, since then. It is common as individuals of society may be able to infect a huge number of people, there is
clearly diversity in human nature and interpersonal interactions. As a result, it is more appropriate to represent disease
transmission via complicated networks. In addition, certain diseases have a time of incubation. Susceptible, infected,
and recovered populations, as well as undiagnosed infectious populations, can be divided. Individuals with diseases
such as measles and pertussis who go undiagnosed are known as undiagnosed infectious populations. Populations
without a diagnosis significantly contribute to the transmission of infectious diseases. Modeling incubation periods for
many diseases is a strong suit for the susceptible-exposed-infectious-recovered (SEIR) approach.

In the real world, environmental factors like precipitation, temperature, and specific humidity invariably have an
impact on biological populations. It is required to inject randomness into the deterministic model in order for it
to be more realistic. The significance of stochasticity in epidemic dynamics has long been recognized. Because the
deterministic predator–prey model has some limitations in accurately predicting future dynamics, many researchers
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have begun to investigate how noise affects the dynamics of prey–predator systems (see, for example, [6–8] and [15]).
The stochastic SEIR epidemic approach too has interesting findings. For instance, Zhang and Wang developed sto-
chastic SEIR schemes using discontinuities for simulate its extensive transmission of infectious diseases brought on by
negligence in the medical field [28].

Witbooi established that the disease-free equilibrium has almost certain exponential stability in an SEIR epi-
demic approach through separate stochastic disturbances [16]. Liu et al. explored the asymptotic behaviour of the
disease-free equilibrium and the endemic equilibrium about a stochastic delayed SEIR epidemic model using nonlinear
occurrence[26]. A two-group stochastic SEIR system exhibiting infinite delay was developed by Liu et al., who also
discovered the prerequisites of endemic equilibrium asymptotic stability [16]. In China, where human rabies is one
of the biggest public health issues, the SEIR model has also been utilized to investigate efficient preventative and
control approaches [29]. About the influenza A(H1N1), the traditional SEIR model has been combined with statistical
approaches to estimate the prevalence of A(H1N1) in Singapore [20, 24]. It has been used to predict the infected
individuals, hospital bed shortages, and effectiveness of vaccination in a city of Japan.

The dynamic behaviour of a nonlinear stochastic SEIR epidemic approach using various population sizes was ex-
amined by Han et al. in [3]. Considering it enables us to include disturbance within deterministic biological systems
to highlight the effects of ecological fluctuation, whether it is a random disturbance on differential setups or ecological
vacillations in borders [13, 14, 25–27, 30]. Numerous researchers [2, 4, 5, 17–19] recently concentrated on parts of
stochastic populations that are annoyed with recurring sound (Brownian movement).

To account for unpredictability in the model, epidemic models with random perturbations have been extensively
investigated. Recent research has shown evidence of a possible mechanism by which the development of COVID-19
may have been directly influenced by environmental change. The paper emphasizes, in particular, the stochastic
stability of the endemic equilibrium.

The breakup of an article’s organization is as described in the following: With the presumption that exposed as
well as infected people come into contact with susceptible people at the same rate, the model formulation is explored
in section 2 of the article. In section 3, we explored a qualitative analysis of the model: In section 3.1, we compute the
proposed model’s fundamental reproduction number; In section 3.2, we evaluate the local stability of the disease-free
and endemic equilibrium points in terms of R0. Section 4 discuss the proposed system’s stochastic stability. In section
5 of the numerical simulations, the utility of our approach is demonstrated. Section 6 of our findings brings us to a
close.

2. Mathematical Model

The SIR model, a compartmental model, divides the population into three categories at time t: the susceptible
S(t), the infected I(t), and the recovered R(t) individuals. We can better understand how the presence of infectious
persons affects the risk of infection among susceptible individuals by using the transmission-dynamic epidemic models.
A person who has contracted an infection recovers after receiving therapy. The differential equation system now looks
like this:

dS

dt
= −θSI,

dI

dt
= θSI − ηI, (2.1)

dR

dt
= ηI.

where θ, η denote the rate of infection, rate of infection recovery respectively, and N is the total population quantity
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such that S + I +R = N for all t. These older models, however, did not take into consideration the likelihood of im-
migration and emigration. We used a demographics-based model in which the emigration rate ν and the immigration
rate r were taken into consideration.

dS

dt
= π − θSI − δS,

dI

dt
= θSI − ηI − δI, (2.2)

dR

dt
= ηI − δR.

This model includes a bilinear incidence rate, and in the suggested model, disease transmission between S and I is

taken into account using a nonlinear incidence rate
θSI

1 + φ1S + φ2I
, which represents the effect of behavioral changes

in the susceptible population caused by an increase in the infective population on disease transmission. Now that the
population of type SEIR has been specified, the differential equations that control this model are as follows:

dS

dt
= π − δS − θSI

1 + φ1S + φ2I
,

dE

dt
=

θSI

1 + φ1S + φ2I
− (δ + ζ)E, (2.3)

dI

dt
= ζE − (δ + η)I,

dR

dt
= ηI − δR.

Where E is the exposed individuals, π is the population’s frequency of recruiting, δ is the rate of natural death, η
is the infected people’s rate of recovery, θ is the rate of exposure, and is the rate at which exposed people get an
infection. Thus 1/ζ presents the mean latent period. φ1, φ2 are the metrics used to assess how social, psychological,
or other systems have an impact. Notably, the first three equations under discussion may be solved independently of
the fourth, indicating that the fourth equation is essentially redundant.

3. Qualitative analysis of the model

The basic reproduction number is one of the most important thresholds to consider when analyzing infectious
disease models that quantify disease invasion or extinction in a population. In this section, we calculate our model’s
basic reproduction number (2.3) and investigate the disease-free equilibrium’s locally asymptotically stability.

3.1. Equilibrium points and their stability. An infection-free steady state Ω1(π/δ, 0, 0) and an endemic steady
state Ω2(S?, E?, I?) are present in the system (2.3) at all times.

where S? =
π (πζφ2 + (δ + η)(ζ + δ))

πζφ2δ + (δ + η)(ζ + δ) [(δ + πφ1)(R0 − 1) + δ)]
, E? =

(δ + η) I?

ζ
,

I? =
ζπ(δ + πφ1)(R0 − 1)

πζφ2δ + (δ + η)(ζ + δ) [(δ + πφ1)(R0 − 1) + δ)]
and R0 (basic reproduction rate) is defined as

R0 =
θπζ

(δ + η)(ζ + δ)(δ + πφ1)
.

Hence, an endemic steady state Ω2 exists when R0 > 1.
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3.2. Stability of the steady state solutions. The linearized system of the model (2.3) Jacobian matrix is

J =



−δ − θI?(1 + φ2I
?)

(1 + φ1S? + φ2I?)2
0 − θS?(1 + φ1S

?)

(1 + φ1S? + φ2I?)2

θI?(1 + φ2I
?)

(1 + φ1S? + φ2I?)2
−(δ + ζ)

θS?(1 + φ1S
?)

(1 + φ1S? + φ2I?)2

0 ζ −(δ + η)


. (3.1)

We define the above Jacobian matrix at to examine the stability of infected free equilibrium Ω1.

JΩ1
=



−δ 0 −θS
?(1 + φ1S

?)

(1 + φ1S?)2

0 −(δ + ζ)
θS?(1 + φ1S

?)

(1 + φ1S?)2

0 ζ −(δ + η)


. (3.2)

The characteristic equation of (3.2) is given by

(λ+ δ)(λ2 + p1λ+ p2) = 0,

the coefficients are given by p1 = (δ + η) + (δ + ζ), p2 = (δ + η)(δ + ζ) − θζS?

(1 + φ1S?)
, on using S? in this, we obtain

p2 = (δ + η)(δ + ζ) [1−R0]. Therefore, we have λ = −δ and λ2 + p1λ+ p2 = 0 that is quadratic equation in λ. If two
negative roots exists in this equation, then Ω1 is stable; otherwise, it is unstable. If and only if p1 > 0 and p2 > 0, the
aforementioned quadratic equation meets Routh Hurwitz condition for having two negative roots. Thus p1 is indeed
positive and p2 > 0 if R0 < 1. Therefore, infected free steady state is stable forR0 < 1.
The Jacobian matrix of (2.3) at endemic equilibrium can be obtained as follows.

JΩ2 =



−δ − θI?(1 + φ2I
?)

(1 + φ1S? + φ2I?)2
0 − θS?(1 + φ1S

?)

(1 + φ1S? + φ2I?)2

θI?(1 + φ2I
?)

(1 + φ1S? + φ2I?)2
−(δ + ζ)

θS?(1 + φ1S
?)

(1 + φ1S? + φ2I?)2

0 ζ −(δ + η)


. (3.3)

The characteristic equation of (3.3) is given by

λ3 + L1λ
2 + L2λ+ L3 = 0. (3.4)

The coefficients are L1 = δ+(δ+η)+(δ+ζ)+
θI?(1 + φ2I

?)

(1 + φ1S? + φ2I?)2
, L2 = [(δ+η)+(δ+ζ)]

[
δ +

θI?(1 + φ2I
?)

(1 + φ1S? + φ2I?)2

]
+

(δ+η)(δ+ ζ)− ζθS?(1 + φ1S
?)

(1 + φ1S? + φ2I?)2
, L3 = δ

[
(δ + η)(δ + ζ)− ζθS?(1 + φ1S

?)

(1 + φ1S? + φ2I?)2

]
+(δ+ ζ)(δ+η)

θI?(1 + φ2I
?)

(1 + φ1S? + φ2I?)2
.

The equilibrium point is locally asymptotically stable when the equation (3.4) does not have positive roots or a set of
complex roots having a real portion that is negative.
By Routh Hurwitz criteria (3.4) has negative roots if L1 > 0, L3 > 0, and L1L2 − L3 > 0. Thus L1 is always

positive and if R0 > 1, we have (δ + ζ)(δ + η) − ζθS?(1 + φ1S
?)

(1 + φ1S? + φ2I?)2
=

φ2(δ + ζ)(δ + η)I?

(1 + φ1S? + φ2I?)
> 0, L1L2 − L3 =

[2δ + η + θ1][2δ + η + ζ](δ + θ1) + [3δ + η + ζ + θ1] ((δ + ζ)(δ + η)− θ2) + δθ2 + (δ + ζ)2[δ + θ1] > 0.

Where θ1 =
θI?(1 + φ2I

?)

(1 + φ1S? + φ2I?)2
, and θ2 =

ζθS?(1 + φ1S
?)

(1 + φ1S? + φ2I?)2
.
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Hence, by Routh-Hurwitz criteria the endemic steady state of the scheme (2.3) is locally asymptotically stable when
R0 > 1.

4. Stochastic Stability

The effects of external disturbances on the system (2.3) were presented in this part using white noise theory. At
endemic equilibrium, these findings are discussed. We consider the linearized model with perturbations x1 and x2 to
discuss the stochastic system’s stability. Mean-square variations were used to assess the scheme’s stochastic stability.
The delayed stochastic disturbed scheme is provided by

dS

dt
= π − δS − θSI

1 + φ1S + φ2I
+ q1ξ1(t),

dE

dt
=

θSI

1 + φ1S + φ2I
− (δ + ζ)E + q2ξ2(t), (4.1)

dI

dt
= ζE − (δ + η)I + q3ξ3(t).

Linearising the scheme (4.1) by taking perturbations S = S1 + S?, E = E1 + E? and I = I1 + I? then

dS1(t)

dt
= −θS?I1 + q1ξ1(t),

dE1(t)

dt
= q2ξ2(t), (4.2)

dI1
dt

= q3ξ3(t).

We can obtain the following on using Fourier transforms both sides,
q1ξ1(t) = iωS1(ω) + θS?I1(ω),
q2ξ2(t) = iωE1(ω),
q3ξ3(t) = iωI1(ω).
From above equations, we can write the matrix form as

ξ(ω) = L(ω)V (ω), (4.3)

where L(ω) =

l11 l12 l13

l21 l22 l23

l31 l32 l33

, ξ(ω) =

q1ξ1(t)
q2ξ2(t)
q3ξ3(t)

, V (ω) =

S1(ω)
E1(ω)
I1(ω)

, and the elements (row wise) of L(ω)are given

by
l11 = iω; l12 = 0; l13 = θS?;
l21 = 0; l22 = iω; l23 = 0; l31 = 0; l32 = 0; l33 = iω.
Since |L(ω)| 6= 0;we can write (4.3) as

V (ω) = L−1(ω)ξ(ω) = O(ω)ξ(ω), (4.4)

where O(ω) = L−1(ω) =
AdjL(ω)

|L(ω)|
.

Now from the spectral density, we define Sg(ω)dω = limT→∞
|g(ω)|2

T
,

where g(t) an arbitrary function with mean is zero and Sg(ω) represents the variance of the elements of g(t) within
the interval [ω, ω + dω].
The inverse transform of Sg(ω) is the auto covariance function is given by

Cg(τ
′
) =

1

2π

∫ ∞
−∞

Sg(ω)eiωτ
′

dω,
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and the variance function g(t) is given by

σ2
g = Cg(0) =

1

2π

∫ ∞
−∞

Sg dω.

From(4.4), the average value of the population is Vi =
∑3
j=1 oijξj(ω) with i = 1, 2, 3. Therefore, Svi =

∑3
j=1 qj |oij(ω)|2

(i = 1, , 2, 3).

The deviations of vi(i = 1, 2, 3) as indicated by

σ2
vi =

1

2π

∫ ∞
−∞

Svi , dω =
1

2π

3∑
j=1

∫ ∞
−∞

qj |nij(ω)|2dω.

As a result, using aforementioned deviations and scheme (4.1), we can determine

σ2
v1 =

1

2π

[
q1

∫ ∞
−∞

∣∣∣∣ A1

|L(ω)|

∣∣∣∣2 dω + q2

∫ ∞
−∞

∣∣∣∣ A2

|L(ω)|

∣∣∣∣2 dω + q3

∫ ∞
−∞

∣∣∣∣ A3

|L(ω)|

∣∣∣∣2 dω
]
,

σ2
v2 =

1

2π

[
q1

∫ ∞
−∞

∣∣∣∣ B1

|L(ω)|

∣∣∣∣2 dω + q2

∫ ∞
−∞

∣∣∣∣ B2

|L(ω)|

∣∣∣∣2 dω + q3

∫ ∞
−∞

∣∣∣∣ B3

|L(ω)|

∣∣∣∣2 dω
]
, (4.5)

σ2
v3 =

1

2π

[
q1

∫ ∞
−∞

∣∣∣∣ C1

|L(ω)|

∣∣∣∣2 dω + q2

∫ ∞
−∞

∣∣∣∣ C2

|L(ω)|

∣∣∣∣2 dω + q3

∫ ∞
−∞

∣∣∣∣ C3

|L(ω)|

∣∣∣∣2 dω
]
,

where |L(ω)| = L1(ω) + iL2(ω) and L1(ω) = 0 and L2(ω) = −ω3, where |A1|2 = |B2|2 = |C3|2 = ω4; |A2|2 = |B1|2 =

|B3|2 = |C1|2 = |C2|2 = 0; |A3|2 = (θS?ω)
2
.

The deviations of the scheme’s (4.1) populations x and y are provided by the results in (4.5). These integrals
are extremely tough to come by in general. We can simply explain these results using numerical simulations without
sacrificing generality. We may determine variance by using alternative parameter values and a time lag. If the variance
is modest, the corresponding population is stable; otherwise, it is unstable.

5. Numerical Simulations

We’ll consider throughout this section that every variable is provided as in proper units.
Illustration 1. Given scheme (2.3), which is asymptotically stable for different sigma estimates using parameter
values as π = 5.5, δ = 0.01, θ = 0.814, φ1 = 1.08, φ2 = 0.3, η = 0.621. System (2.3) has an infected free steady state
for ζ = 0.04, and is asymptotically stable when R0 < 1. If ζ = 0.052, an endemic equilibrium is exists and it is
asymptotically stable when R0 > 1.
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Figure 1. System (2.3) predictive direction at disease-free equilibrium when ζ = 0.04.

0 100 200 300 400 500
6

8

10

12

14

16

18

20

22

24

Time

S
(t

),
I(

t)

 

 

S(t)

I(t)

Figure 2. Deterministic trajectories of system (2.3) at endemic equilibrium when ζ = 0.52.

Illustration 2. By taking the above parameter values as π = 5.5, δ = 0.001, θ = 0.814, φ1 = 1.08, φ2 = 0.3, η =
0.621, ζ = 0.8, and for different values of white noise intensities, we got the following graphs. We can see in the next
pictures (Figures 3, 4, and 5) that as the white noise intensities increase, the populations converge on the equilibrium
point with substantially less oscillations.
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Figure 3. Shows deterministic system (2.3)’s time series assessment with random fluctuations around
the equilibrium point with q1 = 0.03; q2 = 0.07; q3 = 0.08.
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Figure 4. Shows deterministic system (2.3)’s time series assessment with random fluctuations around
the equilibrium point with q1 = 0.06; q2 = 0.09; q3 = 0.2.
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Figure 5. Shows deterministic system (2.3)’s time series assessment with random fluctuations around
the equilibrium point with q1 = 0.09; q2 = 0.2; q3 = 0.4.

6. Conclusion

In this study, mathematical analysis was used to examine the evolution of the SEIR scheme having saturation rela-
tive risk with a stochastic effect. We identified two equilibrium points: the infected free equilibrium and the endemic
equilibrium, then we found that these two points are stable if R0 is less than one and more than one respectively.
The incidence of transmission and the rate of disease detection are significantly influenced by a number of extraneous
factors in the actual world; as a result, this unpredictability must be accounted for in the model. We examined
stochastic perturbation of model (2.3), which causes considerable changes in population intensity due to low, medium,
and high oscillation variances. As a result, we infer that the incorporation of stochastic perturbation in our considered
dynamical system generates a major change in system behavior for a little change in white noise intensities, resulting
in enormous environmental fluctuations. We discovered that environmental disruptions had an impact on disease
propagation in the population using numerical simulation.

Studying the epidemic’s spread after the implementation of control measures like vaccination or isolation could
be a potential follow-up to this paper. A different option is to use the BSDE approach [1] to study the spread
of infections for non-homogeneous Markov-modulated models. The BSDE approach yields efficient computation of
system performance and aids in lowering the computational costs resulting from the large size of the matrices involved
in models based on Markovian arrival process. Additionally, by adopting fractional order, we can extend these models
[9, 21, 23].
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