- [1] A. Arikoglu and I. Ozkol, Solution of fractional integro-differential equations by using fractional differential transform method, Chaos Solitons Fractals, 40 (2009), 521–529.
- [2] H. Adibi and A. M. Rismani, On using a modified Legendre-spectral method for solving singular IVPs of LaneEmden type, Comput. Math. Appl., 60 (2010), 2126–2130.
- [3] B. Alpert, A class of basis in L2 for the sparse representation of integral operatorse, SIAM J. Math. Anal., 24(1), (1993), 246–262.
- [4] B. Alpert, G. Beylkin, R. R. Coifman, and V. Rokhlin, Wavelet-like basis for the fast solution of second-kind integral equations, SIAM J. Sci. Statist. Comput., 14(1), (1993), 159–184.
- [5] C. M. Bender, K. A. Milton, S. S. Pinsky, and L. M. Simmons, A new perturbative approach to nonlinear problems. Journal of Mathematics and Physics, 30 (1989), 1447–1455.
- [6] L. H. Cui and Z. X. Cheng, A method of construction for biorthogonal multiwavelets system with 2 multiplicity, Applied Mathematics and Computiation, 167 (2005), 901–918.
- [7] W. Dahmen, B. Han, R. Q. Jia, and A. Kunoth, Biorthogonal multiwavelets on the interval, cubic Hermite spline, Constr. Approximation. 16(2) (2000), 221–259.
- [8] M. R. Darani and S. Bagheri, Fractional type of flatlet oblique multiwavelet for solving fractional differential and integro-differential equations, Computational Methods for Differential Equations, 2 (2014), 286–282.
- [9] M. R. Darani, H. Adibi, and M. Lakestani, Numerical solution of integrodifferential equations using flatlet oblique multiwavelets, Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathematical Analysis, 17 (2010), 45–57.
- [10] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math, 41 (1998), 909–996.
- [11] I. Daubechies, Ten Lectures on Wavelets, in: CBMS-NSF Lecture Notes, vol. 61, SIAM. (1992).
- [12] M. Dehgan, M. Shakourifar, and A. Hamidi, The solution of linear and nonlinear systems of Volterra functional equations using AdomianPade techniques, Chaos, Soliton Fract, 39 (2009), 2509–2521.
- [13] A. A. Elbeleze, A. Klman, and M. T. Taib, Approximate solution of integro-differential equation of fractional (arbitrary) order, J. King Saud Univ., Sci, 28 (2016), 61–68.
- [14] T. N. T. Goodman and S. L. Lee, Wavelets of multiplicity, Tranc. Amer. Math. Soc, 342 (1994), 307–324.
- [15] J. C. Goswami, A. K. Chan, and C. K. Chui, On solving first-kind integral equations using wavelets on bounded interval, IEEE Trans. Antennas Propag., 43 (1995), 614–622.
- [16] B. Han and Q. T. Jiang, Multiwavelets on the interval, Appl. Comput. Har- mon. Anal., 12 (2002), 100–127.
- [17] C. H. Hsiao and W. J. Wang, Optimal control of linear time-varying systems via Haar wavelets, J. Optim. Theory Appl. 103(3), (1999), 641–655.
- [18] S. Islam, I. Aziz, and M. Fayyaz, A new approach for numerical solution of integro-differential equations via Haar wavelets, Int. J. Comp. Math., 90(9) (2013), 1971–1989.
- [19] S. Karimi Vanani and A. Aminataei, Operational tau approximation for a general class of fractional integrodifferential equations. Comput. Appl. Math., 30(3) (2011), 655-674.
- [20] R. C. Mittal and R. Nigam, Solution of fractional integro-differential equations by Adomian decomposition method, Int. J. Adv. Appl. Math. Mech., 4(2) (2008), 87-94.
- [21] K. Maleknejad, M. N. Sahlan, and A. Ostadi, Numerical solution of fractional integro-differential equation by using cubic B-spline wavelets, Proceedings of the World Congress on Engineering 2013, Vol. I, London, UK, 35 July 2013, (2013).
- [22] M. Maleki and M. T. Kajani, Numerical approximations for Volterras population growth model with fractional order via a multi-domain pseudospectral method, Appl. Math. Model., 39, (2015), 4300–4308.
- [23] X. Ma and C. Huang, Spectral collocation method for linear fractional integro-differential equations, Appl. Math. Model. 38, (2014), 1434–1448.
- [24] Y. Nawaz, Variational iteration method and homotopy perturbation method for fourth-order fractional integrodifferential equations, Comput. Math. Appl., 61 (2011), 2330–2341.
- [25] K. Parand and M. Nikarya, Application of Bessel functions for solving differential and integro-differential equations of the fractional order, Appl. Math. Model., 38 (2014), 4137–4147.
- [26] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999).
- [27] R. K. Pandey, S. Sharma, and K. Kumar, Collocation Method for Generalized Abels Integral Equations, J. Comput. Appl. Math., 302 (2016), 118–128.
- [28] R. K. Pandey, S. Sharma, and K. Kumar, Collocation method with convergence for generalized fractional integrodifferential equations, J. Comput. Appl. Math., 30219 (2018), 377–427.
- [29] H. Saaedi and M. Mohseni Moghadam, Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets. Commun, Nonlinear Sci. Numer. Simul., 16 (2011), 1216–1226.
- [30] N. H. Sweilam and M. M. Khader, A Chebyshev pseudo-spectral method for solving fractional-order integrodifferential equations, ANZIAM J., 51 (2010), 464–475.
- [31] M. H. Saleh, S. M. Amer, M. A. Mohamed, and N. S. Abdelrhman, Approximate solution of fractional integrodifferential equation by Taylor expansion and Legendre wavelets methods, CUBO 15(3) (2013), 89–103.
- [32] P. K. Sahu and S. Saha Ray, A novel Legendre wavelet PetrovGalerkin method for fractional Volterra integrodifferential equations, Comput. Math. Appl., (2016), in press. https://doi.org/10.1016/j.camwa.2016.04.042.
- [33] B. Turmetov and J. Abdullaev, Analytic solutions of fractional integro-differential equations of Volterra type, Int. J. Mod. Phys. Conf. Ser., 890 (2017), 012113.
- [34] Y. Wang and L. Zhu, Solving nonlinear Volterra integro-differential equations of fractional order by using Euler wavelet method, Adv. Differ. Equ., (2017), 2017:27.
- [35] S. Y u¨zbas, A numerical approximation for Volterras population growth model with fractional order. Appl. Math. Model., 37 (2013), 3216–3227.
- [36] Y. Yang, Y. Chen and Y. Huang Convergence analysis of the Jacobi spectral-collocation method for fractional integro-differential equations, Acta Math. Sci. Ser. B Engl. Ed., 34(3) (2014), 673–690.
- [37] J. Zhao, J. Xiao, and N.J. Ford, Collocation methods for fractional integro-differential equations with weakly singular kernels. Numer, Algorithms, 65 (2014), 723–743.
|