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Abstract

This investigation centers on the analysis of an inverse hyperbolic partial differential equation, specifically ad-

dressing a coefficient inverse problem that emerges under the imposition of an over-determination condition. In

order to address this challenging problem, we employ the well-established homotopy analysis technique, which
has proven to be an effective and reliable approach in similar contexts. By utilizing this technique, our primary

objective is to achieve an efficient and accurate solution to the inverse problem at hand. To substantiate the
effectiveness and reliability of the proposed method, we present a numerical example as a practical illustration,

demonstrating its applicability in real-world scenarios.
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1. Introduction

The application of ordinary and partial differential equations plays a crucial role in various fields, serving as powerful
tools for understanding and modeling complex phenomena. The field of applied ordinary and partial differential
equations has witnessed significant advancements through numerous research papers, further enriching our knowledge
and expanding our capabilities in these areas. For instance, Machado et al. [38] proposed a highly accurate scheme
specifically designed for solving the Cauchy problem of the generalized Burgers-Huxley equation, enabling precise
predictions and detailed analysis of the system’s behavior. Mokhtary et al. [23] developed a computational approach
tailored to address non-linear weakly singular Volterra integral equations with proportional delay, thereby extending the
range of applications for these equations. Mostaghim et al. [24] introduced a computational technique for simulating
variable-order fractional Heston models, which find practical utility in financial modeling, particularly in the context
of the US stock market. They also ventured into the numerical simulation of fractional-order dynamical systems in
noisy environments, effectively tackling challenges associated with real-world scenarios [25]. Moniri et al. [26] made
significant contributions by devising an efficient and robust numerical solver for the impulsive control of fractional
chaotic systems, opening up avenues for controlling and manipulating complex dynamical behaviors. Lastly, the
numerical investigation conducted by Moghaddam et al. [28] centered on fractional dynamical systems with impulsive
effects, offering significant understanding of the dynamics exhibited by these systems in different domains. Similarly,
Sharifi et al. [32] presented an efficient numerical simulation approach for the fractional-order Van der Pol impulsive
system.

In the realm of hyperbolic partial differential equations, the task of finding solutions and examining their well-
posedness poses significant challenges. This difficulty is particularly pronounced when addressing inverse problems
associated with hyperbolic partial differential equations. In the subsequent paragraphs, we will briefly introduce papers
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in this context that have made notable contributions to the field. Colton and Monk [4] conducted a study comparing two
approaches to inverse scattering for acoustic waves in nonhomogeneous media, analyzing the strengths and weaknesses
of each method. Kedzierawski [13] employed the Colton-Monk approach to calculate the inverse scattering of acoustic
waves and determine the complex refraction index. Sylvester and Uhlmann [37] explored research on anisotropic inverse
hyperbolic problems, while Tsien and Chen [39] adopted the pulse-spectrum approach to address inverse problems in
electromagnetic wave propagation. Chen and Liu [37] utilized this method to solve a two-dimensional inverse linear
wave equation. These papers contribute to the understanding and resolution of inverse issues related to hyperbolic
partial differential equations.

Yamamoto [41] obtained the stability, regularization, and reconstruction formula for an inverse hyperbolic problem
using a control method. He also investigated ill-posedness and Tikhonov regularization for a multidimensional inverse
hyperbolic problem [42]. Yamamoto and Zhang employed the Carleman estimate [43] to determine the global unique-
ness and stability of the inverse source problem of the wave equation. In order to determine the coefficient and source
function of the impulse type for a two-dimensional wave equation, Romanov [29] considered inverse difficulties.

Consider the following hyperbolic partial differential equation [10],

utt = uxx + d(t)u+ f(x, t), (x, t) ∈ (0, l)× [0, T ], (1.1)

with initial and boundary conditions

u(x, 0) = g(x), ut(x, 0) = h(x), x ∈ [0, l], (1.2)

u(0, t) = φ(t), u(l, t) = ψ(t), t ∈ [0, T ]. (1.3)

The following problem is referred to as a direct problem if all the data, including the coefficient d(t), the source term
f(x, t), the beginning conditions g(x), h(x), and the boundary conditions φ(t), ψ(t), are known and the goal is to
identify the solution u from these data. Otherwise, the issue is one that is reversed.

For the aforementioned hyperbolic partial differential equation, we now explore an inverse problem. The objective
is to use the previously provided known data to determine the solution u and coefficient d. An additional condition is
needed in order to discover these unknowns:

u(x0, t) = χ(t), x0 ∈ (0, l). (1.4)

This type of problem is called coefficient inverse problem. For other kinds of inverse problems see [11] and references
therein.

Using the homotopy analysis method (HAM), the inverse problem indicated will be resolved. Liao [15] proposed
HAM in 1992 to solve nonlinear differential equations. HAM is independent of any physical parameter, in contrast to
perturbation approaches [27, 40], which rely on physical parameters. Additionally, certain analytical approximation
techniques are used in this method, including the Lyapunov artificial small parameter method [21], the Adomian
decomposition method [1, 2], the δ-expansion method [12], the homotopy perturbation method, and others.The base
function, starting guess, and equation type can all be chosen with significant freedom and flexibility in HAM. In
contrast to other analytical approximation techniques, HAM provides a convergence control parameter that ensures
the approach will converge. Later, numerous nonlinear issues in science and engineering are solved using this method;
for example, see [14, 16, 19, 22, 30, 33, 35, 44]. This technique was applied by Shidfar et al. [34] to find the unknown
source term in a parabolic partial differential equation. Shidfar and Molabahrami [36] also use HAM to tackle inverse
heat conduction difficulties. In this study, the inverse issue for a hyperbolic partial differential equation is solved using
a weighted method built from HAM, known as the weighted homotopy analysis method (WHAM).

2. Description of HAM

In this section, we will discuss the homotopy analysis approach, an analytical approximation technique that may
successfully solve a given nonlinear differential equation. Take the nonlinear differential equation, for example

N [u(x, t)] = 0, (x, t) ∈ Ω× (0, T ), (2.1)
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N is a nonlinear differential operator, u is a function that needs to be discovered, and x and t, respectively, are spatial
and temporal independent variables. Based on homotopy in topology, one can construct zeroth-order deformation
equation as follows

(1− q)L[φ(x, t; q)− u0(x, t)] = q~H(x, t)N [φ(x, t; q)], q ∈ [0, 1], (2.2)

where q is a homotopy or embedding parameter when it increases from 0 to 1, φ(x, t; q) varies from u0(x, t) to the
exact solution of the nonlinear differential equation, L is an auxiliary linear operator, u0 is an initial guess of the
exact solution that satisfies the initial and boundary conditions, H(x, t) is an auxiliary function, and ~ is called the
convergence-control parameter (2.1).

One needs to define homotopy derivative in order to obtain the high-order deformation equation. The m-th order
homotopy derivative for φ as a function of the homotopy parameter q can be stated as

Dmφ(x, t; q) =
1

m!

dmφ

dqm
|q=0, (2.3)

and Dm is called m-th order homotopy-derivative operator. For properties of the homotopy derivative, one can see
[20, Chapter 4]. Assume that

φ(x, t; q) =

∞∑
m=0

um(x, t)qm, (2.4)

is the homotopy-Macluarin series of φ, where um = Dmφ(x, t; q). Then, applying the m-th order homotopy derivative
Dm on both sides of zeroth-order deformation Eq. (2.2) and using the properties of homotopy derivative, one can get
the high-order deformation equation

L[um(x, t)− χmum−1(x, t)] = ~H(x, t)Dm−1[N (φ(x, t; q)], (2.5)

where

χm =

{
0, m ≤ 1,

1, m > 1.
(2.6)

The high-order deformation equation is a linear differential equation, just like the zeroth-order deformation equation,
and it can be solved using a computer algebra system like Mathematica or Maple. Be aware that the HAM’s fun-
damental principle is to convert the original nonlinear problem into a series of linear problems. See [15, Chapter 4]
for a more general form of the deformation equation. To express the solution of the nonlinear differential equation,
we now require a collection of base functions (2.1). The high flexibility and freedom in setting the base function,
initial estimate u0, and auxiliary linear operator L is one of the benefits of HAM over other analytical approximation
techniques. Assume that the expression of u(x, t) is Assume that u(x, t) is expressed by

u(x, t) =

∞∑
k=1

akek(x, t), (2.7)

where ak is a coefficient and ek(x, t) is the base function. To choose the base functions, some rules are given in [20,
Chapter 4]. Now, a proper initial approximation and an appropriate auxiliary linear operator must be chosen in such
a way that the homotopy series u0 +

∑∞
m=1 um converge.

Convergence-control-parameter ~ is another benefit of HAM. By applying ~-curves to this parameter, one can
determine the region where the homotopy series converges. Interested readers can refer to [20, Chapter 4] for more
information on the choice of base functions, initial guess u0, auxiliary linear operator L, and convergence control-
parameter.
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3. Description of WHAM

To solve the coefficient inverse problem of the hyperbolic partial differential equation (1.1), we provide a weighted
homotopy analysis method in this section (1.3). Using (1.4) and (1.1) with x = x0 as the replacement, one can obtain

d(t) =
χ

′′
(t)− uxx(x0, t)− f(x0, t)

χ(t)
. (3.1)

Once again, substituting this into relation (1.1), yields

utt = uxx + ξ(t)u+ η(t)uxx(x0, t)u+ f(x, t), (3.2)

u(x, 0) = g(x), ut(x, 0) = h(x), (3.3)

u(0, t) = ϕ(t), u(l, t) = ψ(t), (3.4)

where

α(t) =
χ

′′
(t)− f(x0, t)

χ(t)
, β(t) = − 1

χ(t)
.

A nonlinear hyperbolic partial differential equation is what we obtain as a result. The initial and boundary conditions
allow for the definition of two subproblems. The subproblem I is

utt = uxx + ξ(t)u+ η(t)uxx(x0, t)u+ f(x0, t), (3.5)

u(x, 0) = g(x), ut(x, 0) = h(x), (3.6)

and the subproblem II is defined by

utt = uxx + ξ(t)u+ η(t)uxx(x0, t)u+ f(x0, t), (3.7)

u(0, t) = ϕ(t), u(l, t) = ψ(t). (3.8)

We can solve the main problem (3.2) by using HAM to resolve these two subproblems (3.4). One should compute
Dm−1N [φ(x, t; q)] to obtain the solution series for the aforementioned subproblems. First, let’s express the subsequent
theorem.

Theorem 3.1. Let φ and ω be analytic in [0, a) and assume that their homotopy-Maclaurin series are

φ =

∞∑
k=0

ukq
k, ω =

∞∑
k=0

wkq
k, (3.9)

then the following relations hold

(1) Dmφ = um,
(2) Dm(φω) =

∑m
k=0DkφDm−kω =

∑m
k=0 umwm−k.

Proof. Refer to [20, Theorem 4.1]. �

At this moment, we need to define N [φ(x, t; q)]. Assume that

N [φ(x, t; q)] = φtt − φxx − ξ(t)φ− η(t)φxx(x0, t; q)φ− f(x, t). (3.10)

On the other hand, homotopy derivative operator Dm is linear [20, Theorem 4.1]. Thus, using this fact and Theorem
3.1, we have for m = 1

D0N [φ(x, t; q)] =
∂2u0

∂t2
− ∂2u0

∂x2
− ξ(t)u0 − η(t)

∂2u0

∂x2
(x0, t; q)u0 − f(x, t), (3.11)

and for m ≥ 2

Dm−1N [φ(x, t; q)] =
∂2um−1

∂t2
− ∂2um−1

∂x2
− ξ(t)um−1 − η(t)

m−1∑
k=0

∂2uk
∂x2

(x0, t; q)um−k−1. (3.12)
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We have already made progress toward resolving subproblems I and II. We must select an initial guess, u0, and
an auxiliary linear operator L, in order to solve any of the aforementioned subproblems. Allow these values to be
provided by subproblem I.

Lφ(x, t; q) =
∂2φ

∂t2
φ(x, t; q), (3.13)

û0(x, t) = (1 + g1(t))g(x) + g2(t)h(x) + g3(t), (3.14)

where g1(0) = g2(0) = g3(0) = 0, g′1(0) = g′3(0) = 0, g′2(0) = 1. Now, assume that û∗m is the special solution of

L[û∗m] = ~H(x, t)Dm−1N [φ(x, t; q)], (3.15)

and
∑∞

m=0 ûm is the solution series, obtained by HAM, of subproblem I. Therefore,

ûm(x, t) = χmûm−1(x, t) + û∗m(x, t)− t∂û
∗
m

∂t
(x, 0)− û∗m(x, 0), m ≥ 1. (3.16)

Note that initial conditions for each ûm(x, t) are given by ûm(x, 0) = 0, ∂
∂t ûm(x, 0) = 0, for m ≥ 1. Similarly, for

subproblem II , we choose

Lφ(x, t; q) =
∂2φ

∂x2
φ(x, t; q), (3.17)

ũ0(x, t) = u(0, t) + g4(x)(u(l, t)− u(0, t)) + g5(x), (3.18)

where g4(0) = g5(0) = 0, g4(l) = 1 and g5(l) = 0. Assuming that ũ∗m is the special solution of

L[ũ∗m] = ~H(x, t)Dm−1N [φ(x, t; q)], (3.19)

the solution series of subproblem II are computed by,

ũm(x, t) = χmũm−1(x, t) + ũ∗m(x, t)− ũ∗m(l, t)− ũ∗m(0, t)

l
− ũ∗m(0, t), m ≥ 1, (3.20)

and the boundary conditions for each ũm(x, t) are given by ũm(0, t) = 0, ũm(l, t) = 0, for m ≥ 1. Let

ŝm(x, t) =

m∑
n=0

ûn(x, t), s̃m(x, t) =

m∑
n=0

ũn(x, t). (3.21)

Assume also that um(x, t) be the terms of solution series of the original problem. Then, we can define

um(x, t) = αmŝm(x, t) + (1− αm)s̃m(x, t), (3.22)

where the optimal value of αm is given by the following theorem.

Theorem 3.2. Assume that L2(0, T ) and L2(0, l) are the sets of square integrable functions and suppose that ϕ(t), ψ(t) ∈
L2(0, T ) and g(x), h(x) ∈ L2(0, l). Let βn = ‖ŝn(0, t) − ϕ(t)‖2, γn = ‖ŝn(l, t) − ψ(t)‖2, δn = ‖s̃n(x, 0) − g(x)‖2 and
λn =

∥∥ ∂
∂t s̃n(x, 0)− h(x)

∥∥
2
. Therefore, the optimal value of αn is obtained by

αn(~) =
δ2
n + λ2

n

β2
n + γ2

n + δ2
n + λ2

n

, n ≥ 0. (3.23)

Proof. Assume that Jn is the residual functional and is defined by

Jn = ‖un(0, t)− ϕ(t)‖22 + ‖un(l, t)− ψ(t)‖22 + ‖un(x, 0)− g(x)‖22 +

∥∥∥∥∂un∂t (x, 0)− h(x)

∥∥∥∥2

2

. (3.24)

Noting that

ŝn(x, 0) = g(x),
∂

∂t
ŝn(x, 0) = h(x), (3.25)

s̃n(0, t) = ϕ(t), s̃n(l, t) = ψ(t), (3.26)
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and plugging un(x, t) from (3.22), one can get

Jn =α2
n‖ŝn(0, t)− ϕ(t)‖22 + α2

n‖ŝn(l, t)− ψ(t)‖22

+ (1− αn)2 ‖s̃n(x, 0)− g(x)‖22 + (1− αn)2

∥∥∥∥∂s̃n∂t (x, 0)− h(x)

∥∥∥∥2

2

=α2
nβ

2
n + α2

nγ
2
n + (1− αn)2δ2

n + (1− αn)2λ2
n,

(3.27)

where

βn = ‖ŝn(0, t)− ϕ(t)‖2, γn = ‖ŝn(l, t)− ψ(t)‖2, (3.28)

δn = ‖s̃n(x, 0)− g(x)‖2, λn =

∥∥∥∥ ∂∂t s̃n(x, 0)− h(x)

∥∥∥∥
2

. (3.29)

Please take note that Jn is a residual functional. Then, Jn must be minimized in relation to n. We now differentiate
Jn in relation to n and set the outcome to zero. Therefore

(β2
n + γ2

n)αn − δ2
n − λ2

n + (δ2
n + λ2

n)αn = 0, (3.30)

and this, in turn, yields

αn =
δ2
n + λ2

n

β2
n + γ2

n + δ2
n + λ2

n

, n ≥ 0, (3.31)

and the proof is complete. �

4. Numerical result

An illustration of the WHAM’s dependability is presented in this section. Our presumption for this test problem
is that H(x, t) = 1. Comparing the estimated and exact results demonstrates the method’s excellent accuracy.

Example 4.1. Take into account the subsequent hyperbolic partial differential equation

utt = uxx + d(t)u+ ex, (x, t) ∈ (0, 1)× [0, 1], (4.1)

when beginning and boundary conditions are present

u(x, 0) = ex, ut(x, 0) = ex, x ∈ [0, 1], (4.2)

u(0, t) = et, u(1, t) = e1+t, t ∈ [0, 1], (4.3)

and the over determination condition for this problem is

u

(
1

2
, t

)
= e

1
2 +t. (4.4)

Furthermore, the exact solution u and exact coefficient d of the inverse problem (4.1)-(4.4)

u(x, t) = ex+t, d(t) = −e−t. (4.5)

Substituting x0 = 1
2 in (4.1), computing d(t) and constructing the two subproblems accordingly, we get

utt = uxx + ξ(t)u+ η(t)uxx(x0, t)u+ ex, (x, t) ∈ (0, 1)× [0, 1], (4.6)

u(x, 0) = ex, ut(x, 0) = ex, x ∈ [0, 1], (4.7)

as subproblem I and

utt = uxx + ξ(t)u+ η(t)uxx(x0, t)u+ ex, (x, t) ∈ (0, 1)× [0, 1], (4.8)

u(0, t) = et, u(1, t) = e1+t, t ∈ [0, 1], (4.9)

as subproblem II, where

ξ(t) = 1− ex−t− 1
2 , η(t) = −e−t− 1

2 .
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According to (3.14) and (3.18), initial solutions for subproblems I and II are

û0(x, t) = ex(1 + t), (4.10)

ũ0(x, t) = et + x(et+1 − et), (4.11)

Respectively. Applying relations (3.16) and (3.20) for computing û1 and ũ1 respectively, we obtain

û1(x, t) =~e−t((t2 + 6t+ 11)ex + (−0.333333t3 − 1.5t2 + 5t− 11)et+x

+ (0.606531t+ 1.81959)e2x − 1.81959et+2x + 1.21306tet+2x),

ũ1(x, t) = ~(1.42468x+ ex(1.04219x− 2.47785) + 2.47785). (4.12)

The convergence regions of the solution series {ûn}n≥0 and {ũn}n≥0 can be determined by plotting their ~-curves.
These curves illustrate how different parameters impact the convergence of the solution series. The ~-curve is a section
that is nearly parallel to the horizontal axis. By computing more approximate solution series for {ûn}n≥0 and {ũn}n≥0,
a larger convergence region can be obtained for the control parameter ~. In this example, the ~-curves indicate that
the solution series {ûn}n≥0 converges when −3 < ~ < 1, and the series {ũn}n≥0 converges when −0.7 < ~ < 1. To
calculate the values of αn, the approximate solution un(x, t), and the approximate coefficient dn(t), we set ~ = 1

10 .
Using Equations (3.28)-(3.29), we compute βn, γn, δn, and λn for n ≥ 0. Then, we obtain the values of αn using

Equation (3.23) as follows:

α0 = 0.0586206, α1 = 0.127513. (4.13)

By repeating this method and using Equations (3.16), (3.18), and (3.23) (specifically, equation (3.22)), one can obtain
the approximate solution ûn(x, t), ũn(x, t), and αn. Figure 1 displays both the exact solution and the approximate
solution u10(x, t) for the different values of t. Figure 2 illustrates the exact coefficient d(t) = − exp(−t) and the
estimated coefficient d10(t) of the hyperbolic partial differential equation (1.1).

(a)

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

Approximation solutions

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  

(b)

Figure 1. Left: (a) Graph of the approximate solution u10(x, t). Right: (b) Comparison between analytical solution
u(x, t) and approximate solution u10(x, t) for different values of t.
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Figure 2. Comparison of the analytical coefficient d(t) = − exp(−t) and the approximate coefficient d10(t).

5. Conclusion

In conclusion, this study tackles inverse problems associated with hyperbolic partial differential equations using an
analytical approach, specifically the Homotopy Analysis Method (HAM). The application of HAM has proven to be
highly effective in solving numerous nonlinear differential equations, and in this study, it has been successfully applied
to address the coefficient inverse problem of hyperbolic partial differential equations. The results demonstrate the
accuracy and advantages of the HAM approach, particularly its ability to provide precise solutions without the need
for discretization or numerical approximations.

Moving forward, there are several potential avenues for future research in this field. Firstly, further investigations
can be conducted to explore the applicability of HAM to more complex and challenging inverse problems involving
hyperbolic partial differential equations. Additionally, the development of hybrid numerical-analytical techniques that
combine the strengths of HAM with other numerical methods can potentially enhance the efficiency and accuracy
of solving inverse problems. Moreover, the extension of HAM to higher-dimensional hyperbolic partial differential
equations and systems warrants exploration. Finally, the incorporation of additional constraints and data sources,
such as noisy or incomplete measurements, can provide valuable insights into practical scenarios and contribute to the
development of robust and reliable inverse problem-solving methodologies.
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