- [1] R. Aris, On the dispersion of a solute in a fluid flowing through a tube, Proc R Soc Lond A, 235(1200) (1956), 67–77.
- [2] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math., 25 (1997), 151–167.
- [3] U. M. Ascher, S. J. Ruuth, and B. Tr. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32 (1995), 797–823.
- [4] S. Beck, S. Gonzalez-Pinto, S. Perez-Rodriguez, and R. Weiner, A comparison of AMF-and Krylov-methods inmatlabfor large stiff ode systems, J. Comput. Appl. Math., 262 (2014), 292–303.
- [5] S. Beck, R. Weiner, H. Podhaisky, and B. Schmitt, Implicit peer methods for large stiff ODE systems, Appl. Math. Comput., 38 (2012), 389–406.
- [6] S. Boscarino, Error analysis of IMEX Runge-Kutta methods derived from differential-algebraic systems, SIAM J. Numer. Anal., 45 (2007), 1600–1621.
- [7] S. Boscarino, On an accurate third order implicit-explicit Runge-Kutta method for stiff problems, ppl. Numer. Math., 59(7) (2009), 1515–1528.
- [8] M. Bras, G. Izzo, and Z. Jackiewicz, Accurate implicit-explicit general linear methods with inherent Runge-Kutta stability, J. Sci. Comput., 70 (2017), 1105–1143.
- [9] J. C. Butcher, General linear methods, Acta Numer., 15 (2006), 157–256.
- [10] A. Cardone, R. D’Ambrosio, and B. Paternoster, Exponentially fitted IMEX methods for advection-diffusion problems, J. Comput. Appl. Math., 316 (2017), 100–108.
- [11] A. Cardone, L. Gr. Ixaru, and B. Paternoster, Exponential fitting direct quadrature methods for Volterra integral equations, Numer. Algorithms., 55 (2010), 467–480.
- [12] A. Cardone, L. Gr. Ixaru, B. Paternoster, and G. Santomauro, Ef-Gaussian direct quadrature methods for Volterra integral equations with periodic solution, Math. Comput. Simulat., 110(C) (2015), 125–143 .
- [13] D. Conte, E. Esposito, L. Gr. Ixaru, and B. Paternoster, Some new uses of the ηm(Z) functions, Comput. Phys. Commun., 181 (2010), 128–137.
- [14] A. Cardone, Z. Jackiewicz, A. Sandu, and H. Zhang, Extrapolation-based implicit-explicit general linear methods. Numer. Algor., 65 (2014), 377–399.
- [15] A. Cardone, Z. Jackiewicz, and A. Sandu, Extrapolated Implicit-Explicit Runge-Kutta Methods. Mathematical Modelling and Analysis, 19(1) (2014), 18–43.
- [16] D. Conte, R. D’Ambrosio, M. Moccaldi, and B. Paternoster, Adapted explicit two-step peer methods, J. Num. Math. 255 (2018) ,725–736.
- [17] D. Conte, L. Gr. Ixaru, B. Paternoster, and G. Santomauro, Exponentially-fitted Gauss-Laguerre quadrature rule for integrals over an unbounded interval, J. Comput. Appl. Math., 255 (2014), 725–736.
- [18] D. Conte, L. Moradi B. Paternoster, and F. Mohammadi, Construction of exponentially fitted explicit peer methods, International Journal of Circuits, Systems and Signal Processing, 13 (2019), 501–506, .
- [19] D. Conte, F. Mohammadi, L. Moradi, and B. Paternoster, Exponentially fitted two-step peer methods for oscillatory problems, Comput. Appl. Math., 39 (2020), 10.1007/s40314-020-01202-x.
- [20] D. Conte and B. Paternoster, Modified Gauss-Laguerre Exponential Fitting Based Formulae, J. Sc. Comp., 69(1) (2016), 227–243.
- [21] R. D’Ambrosio, E. Esposito, and B. Paternoster, Parameter estimation in exponentially fitted hybrid methods for second order ordinary differential problems, J. Math. Chem., 50 (2012), 155–168.
- [22] R. D’Ambrosio, E. Esposito, and B. Paternoster, Exponentially fitted two-step Runge-Kutta methods: Construction and parameter selection, Appl. Math. Comput. 218(14) (2012) 7468–7480.
- [23] R. D’Ambrosio, M. Ferro, and B. Paternoster, Two-step hybrid collocation methods for y00 = f(x;y), Appl. Math. Lett., 22 (2009), 1076–1080.
- [24] R. D’Ambrosio, M. Moccaldi, and B. Paternoster, Parameter estimation in IMEX-trigonometrically fitted methods for the numerical solution of reaction-diffusion problems, Computer Physics Communication., 226 (2018) 55–66.
- [25] R. D’Ambrosio, M. Moccaldi, and B. Paternoster, Adapted numerical methods for advection-reaction-diffusion problems generating periodic wavefronts, Computers & Mathematics with Applications, Computers and Mathematics with Applications., 74(5) (2017), 1029–1042.
- [26] R. D’Ambrosio and B. Paternoster, Numerical solution of reaction-diffusion systems of λ-ω type by trigonometrically fitted methods, J. Comput. Appl. Math., 294 (2016), 436–445 .
- [27] R. D’Ambrosio and B. Paternoster, Exponentially fitted singly diagonally implicit Runge-Kutta methods, J. Comput. Appl. Math., 263 (2014), 277–287.
- [28] R. D’Ambrosio and B. Paternoster, Numerical solution of a diffusion problem by exponentially fitted finite difference methods, Springer. Plus., 3 (2014), 425.
- [29] D. R. Durran and P. N. Blossey, Implicit-explicit multistep methods for fast-wave-slow-wave problems, Mon. Weather Rev., 140 (2012), 1307–1325.
- [30] Q. Fattah and J. Hoopes, Dispersion in anistropic homogenoeous porous media. J Hydraul Eng., 111 (1985), 810–27 .
- [31] J. Frank, W. Hundsdorfer, and J. G. Verwer, On the stability of IMEX linear multistep methods, Appl. Numer. Math., 25 (1997), 193–205.
- [32] A. Gerisch, J. Lang, H. Podhaisky, and R. Weiner, High-order linearly implicit two-step peer-finite element methods for time-dependent PDEs, Appl. Numer. Math., 59 (2009), 624–638.
- [33] D. Ghosh and E. M. Constantinescu, Semi-implicit time integration of atmospheric flows with characteristic-based flux partitioning, SIAM J. Sci. Comput., 38(3) (2016) A1848–A1875.
- [34] F. X. Giraldo, J. F. Kelly, and E. M. Constantinescu, Implicit-explicit formulations of a three-dimensional nonhydrostatic unified of the atmosphere (NUMA), SIAM J. Sci. Comput., 35(5) (2013), B1162–B1194.
- [35] V. Guvanasen and R. Volker, Numerical solution for solute transport in unconfined aquifers, Int. J. Numer. Meth. Fluids., 3 (1983), 103–23.
- [36] W. Hundsdorfer, and S. J. Ruuth, IMEX extensions of linear multistep methods with general monotonicity and boundedness properties, J. Comput. Phys., 225 (2007), 2016–2042.
- [37] W. Hundsdorfer and J. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, in: Springer Series in Computational Mathematics, vol. 33, Springer-Verlag, Berlin, Heidelberg, 2003.
- [38] E. Isaacson and H. B. Keller, Analysis of Numerical Methods, Dover Publications, New York, 1994.
- [39] J. Isenberg and C. Gutfinger, Heat transfer to a draining film., Int. J. Heat. Transfer, 16 (1972), 505–12 .
- [40] L. Gr. Ixaru and G. Vanden Berghe, Exponential Fitting, Kluwer, Boston-Dordrecht-London, 2004.
- [41] L.Gr. Ixaru and B. Paternoster, A Gauss quadrature rule for oscillatory integrands, Comput. Phys. Commun., 133 (2001), 177–188.
- [42] Z. Jackiewicz, General Linear Methods for Ordinary Differential Equations, John Wiley and Sons Ltd., Chichester, 2009.
- [43] J. K. Kim, R. Cools, and L. Gr. Ixaru, Extended quadrature rules for oscillatory integrands, Appl. Numer. Math., 46 (2003), 59–73.
- [44] J. K. Kim, R. Cools, and L. Gr. Ixaru, Quadrature rules using first derivatives for oscillatory integrands, J. Comput. Appl. Math., 140 (2002), 479–497.
- [45] J. D. Logan and V. Zlotnik, The convection-diffusion equation with periodic boundary conditions, Appl. Math. Lett., 8(3) (1995), 55–61.
- [46] M. A. Marino and J. N. Luthin, Seepage and Groundwater, Elsevier, Amsterdam, 1982.
- [47] J. Y. Parlarge, Water transport in soils. Ann Rev Fluids Mech, 2 (1980), 77–102.
- [48] B. Paternoster, Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70-th anniversary, Comput. Phys. Comm., 183 (2012), 2499–2512.
- [49] H. Podhaisky, R. Weiner, and B. Schmitt, Rosenbrock-type ‘Peer’ two-step methods, Appl. Numer. Math., 53 (2005), 409–420.
- [50] S. J. Ruuth, Implicit-explicit methods for reaction-diffusion problems in pattern formation, J. Math. Biol., 34 (1995), 148–176.
- [51] J. R. Salmon, J. A. Ligett, and R. H. Gallager, Dispersion analysis in homogeneous lakes, Int. J. Numer. Meth. Eng., 15 (1980), 1627–42.
- [52] W. E. Schiesser, The Numerical Method of Lines: Integration of Partial Differential Equations, Academic Press, San Diego, 1991.
- [53] W. E. Schiesser and G. W. Griffiths, A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab, Cambridge University Press, 2009.
- [54] B. A. Schmitt, R. Weiner, and K. Erdmann, Implicit parallel peer methods for stiff initial value problems, Appl. Numer. Math., 53 (2005), 457–470.
- [55] B. A. Schmitt, R. Weiner, and H. Podhaisky, Multi-implicit peer two-step W-methods for parallel time integration, BIT Numer. Math., 45 (2005), 197–217.
- [56] T. E. Simos, A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical solution of the Schr¨odinger equation, IMA Journ. of Numerical Analysis, 21 (2001), 919–931.
- [57] K. M. Singh and M. Tanaka, On exponential variable transformation based boundary element formulation for advection-diffusion problems, Eng. Anal. Bound. Elem., 24 (2000), 225–35.
- [58] G. D. Smith, Numerical Solution of Partial Differential Equations-Finite Difference Methods, Clarendon Press, Oxford, 1985.
- [59] B. Soleimani, O. Knothb, and R. Weiner, IMEX peer methods for fast-wave-slow-wave problems, App. Num. Math., 118 (2017), 221–237.
- [60] B. Soleimani and R. Weiner, A class of implicit peer methods for stiff systems, J. Comput. Appl. Math., 316 (2017), 358–368.
- [61] N. Su, F. Liu, and V. Anh, Tides as a phase modulated waves inducing periodic groundwater flow in coastal aquifers overlaying a sloping impervious base, Environ. Model. Softw., 18 (2003), 937–942.
- [62] M. Van Daele, G. Vanden Berghe, and H. Vande Vyver, Exponentially fitted quadrature rules of Gauss type for oscillatory integrands, Appl. Numer. Math., 53 (2005), 509–526.
- [63] G. Vanden Berghe, L. Gr. Ixaru, and M. Van Daele, Optimal implicit exponentially-fitted Runge–Kutta methods, Comput. Phys. Commun., 140 (2001), 346–357.
- [64] H. Wang, C. W. Shu, and Q. Zhang, Stability and error estimates of local discontinuous galerkin methods with implicit-explicit time-marching for advection-diffusion problems, SIAM J. Numer. Anal., 53(1) (2015), 206–227.
- [65] R. Weiner, K. Biermann, B. A. Schmitt, and H. Podhaisky, Explicit two-step peer methods, Comput. Math. Appl., 55(4) (2008), 609–619.
- [66] R. Weiner, B. A. Schmitt, H. Podhaisky, and S. Jebens, Superconvergent explicit two-step peer methods, J. Comput. Appl. Math., 223 (2009), 753–764.
- [67] P. W. Werner, Some problems in non-artesian ground-water flow, Trans. Amer. Geophys. Union., 38(4) (1958), 511–558.
- [68] H. Zhang, A. Sandu, and S. Blaise, Partitioned and implicit–explicit general linear methods for ordinary differential equations, J. Sci. Comput., 61 (2014), 119–144.
- [69] E. Zharovsky, A. Sandu, and H. Zhang, A class of implicit-explicit two-step Runge-Kutta methods, SIAM J. Numer. Anal., 53 (2015), 321–341.
- [70] Z. Zlatev, R. Berkowicz, and L. P. Prahm, Implementation of a variable stepsize variable formula in the timeintegration part of a code for treatment of long-range transport of air pollutants., J Comp Phys, 55 (1984), 278–301.
|