تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,486,104 |
تعداد دریافت فایل اصل مقاله | 15,213,336 |
مروری بر پرکاربردترین مدلهای اسکلتی-عضلانی اندام تحتانی جهت شبیهسازی حرکت اسکات در OpenSim | ||
مهندسی مکانیک دانشگاه تبریز | ||
دوره 53، شماره 2 - شماره پیاپی 103، مرداد 1402، صفحه 79-88 اصل مقاله (505.66 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2023.49062.3013 | ||
نویسندگان | ||
زهره ایمانی نژاد1؛ خلیل خلیلی* 2 | ||
1دانش آموخته ی دکتری، گروه مهندسی مکانیک، دانشگاه بیرجند، بیرجند، ایران | ||
2استاد، گروه مهندسی مکانیک، دانشگاه بیرجند، بیرجند، ایران | ||
چکیده | ||
اکثر مدلهای اسکلتی-عضلانی موجود بر پایهی حرکاتی با محدودهی حرکتی کم مانند راه رفتن و دویدن ایجاد شدهاند. حصول اطمینان دربارهی نتایج شبیهسازی حرکت اسکات که با دولا شدن شدید مفاصل لگن و زانو همراه است، یکی از چالش برانگیزترین مسائل در حوزهی بیومکانیک حرکتی است. انتخاب مدل اسکلتی-عضلانی مناسب به عنوان اولین قدم در شبیهسازی همواره یکی از سوالات اصلی پژوهشگران بوده است. در مطالعهی حاضر با بررسی مهمترین تحقیقات انجام شده در بستر OpenSim، مدلهای بکارگرفته شده جهت شبیهسازی حرکت اسکات مورد بررسی قرار گرفتهاند. با جمعبندی مدلهای موجود، راهنمای جامعی شامل اطلاعات این مدلها جهت انتخاب مدل اسکلتی-عضلانی مناسب برای کاربران فراهم شده است. در ادامه جهت مقایسهی بهتر اینمدلها، یک مرحله شبیهسازی با استفاده از مجموعه دادهی کمز توسط هریک از آنها انجام شده است. خطای بالای نیروی تماسی مفصل زانو (خطای بهترین مدل BW% 72=RMS) بر لزوم ارائهی مدلهای دقیقتر در این زمینه تاکید دارد. توسعهدهندگان مدلهای اسکلتی-عضلانی میتوانند از نتایج این تحقیق در جهت بررسی و اصلاح مدلهای فعلی جهت شبیهسازی حرکات با درجات خم شدن شدید مفاصل اندام تحتانی بهره گیرند. | ||
کلیدواژهها | ||
مدل اسکلتی-عضلانی؛ اندام تحتانی؛ اسکات؛ OpenSim؛ نیروی تماسی مفصل؛ زاویه مفصل | ||
مراجع | ||
[1] Blemker S. S., Asakawa D. S., Gold G. E., and Delp S. L., Image-based musculoskeletal modeling: applications, advances, and future opportunities, Journal of magnetic resonance imaging : JMRI, Vol. 25, No. 2, pp. 441-51, 2007. [2] Dao T., RIGID MUSCULOSKELETAL MODELS OF THE HUMAN BODY SYSTEMS: A REVIEW, Journal of Musculoskeletal Research, Vol. 19, pp. 1630001, 2016. [3] Erdemir A., McLean S., Herzog W., and van den Bogert A. J., Model-based estimation of muscle forces exerted during movements, Clin Biomech (Bristol, Avon), Vol. 22, No. 2, pp. 131-54, 2007. [4] Trepczynski A., Kutzner I., Schwachmeyer V., Heller M. O., Pfitzner T., and Duda G. N., Impact of antagonistic muscle co-contraction on in vivo knee contact forces, Journal of NeuroEngineering and Rehabilitation, Vol. 15, No. 1, p. 101, 2018. [5] Valente G., Subject-specific musculoskeletal models of the lower limbs for the prediction of skeletal loads during motion, Ph. D. Thesis, University of Bologna, Italy, 2013. [6] Damsgaard M., Rasmussen J., Christensen S. T., Surma E., and de Zee M., Analysis of musculoskeletal systems in the AnyBody modeling System, Simul Model Pract Th, Vol. 14, No. 8, pp. 1100-1111,2006. [7] LifeModeler, http://www.lifemodeler.com, 2010. [8] Delp S. L. and Loan J. P., A graphics-based software system to develop and analyze models of musculoskeletal structures, Comput Biol Med, Vol. 25, No. 1, pp. 21-34, 1995. [9] Delp S. L. et al., OpenSim: open-source software to create and analyze dynamic simulations of movement, IEEE Trans Biomed Eng, Vol. 54, No. 11, pp. 1940-50, Nov 2007. [10] Harlaar J. and Doorenbosch C., 3D kinematic analysis by BodyMech A Matlab based open source software package for research and education, 2006. [11] Kim Y., Jung Y., Choi W., Lee K., and Koo S., Similarities and differences between musculoskeletal simulations of OpenSim and AnyBody modeling system, Journal of Mechanical Science and Technology, Vol. 32, No. 12, pp. 6037-6044, 2018. [12] Sandholm A., Pronost N., and Thalmann D., MotionLab: A Matlab Toolbox for Extracting and Processing Experimental Motion Capture Data for Neuromuscular Simulations, in Modelling the Physiological Human, Berlin, Heidelberg, N. Magnenat-Thalmann, Springer Berlin Heidelberg, pp. 110-124. 2004. [13] Damm P., Bender A., and Dymke J.. Orthoload. https://orthoload.com/ . [14] Taylor W. R. et al., A comprehensive assessment of the musculoskeletal system: The CAMS-Knee data set, Journal of Biomechanics, Vol. 65, pp. 32-39, 2017. [15] Schellenberg F. et al., Evaluation of the accuracy of musculoskeletal simulation during squats by means of instrumented knee prostheses, Med Eng Phys, Vol. 61, pp. 95-99, 2018. [16] Imani Nejad Z., Khalili K., Seyyed Hamed Hosseini Nasab, Pascal Shütz, Philipp Damm, Adam Trepczynski, Colin R Smith, William R Taylo, Evaluating the accuracy of predicted knee joint loading by generic musculoskeletal models using the CAMS-Knee datasets, presented at the CAMS-Knee Opensim workshop 2020 ETH Zurich, Switzerland, 2020. [17] ایمانی نژاد ز. بررسی اثر انتشار عدم قطعیت بر نیروهای داخلی پروتز مفصل زانو در مدلسازی احتمالاتی سیستم اسکلتی-عضلانی، رسله دکتری، دانشگاه بیرجند، 1400. [18] Imani Nejad Z. et al., The Capacity of Generic Musculoskeletal Simulations to Predict Knee Joint Loading Using the CAMS-Knee Datasets, Ann Biomed Eng, Vol. 48, No. 4, pp. 1430-1440, 2020. [19] ایمانی نژاد ز.، آر تیلور و.، آر اسمیت ک. و خلیلی خ.، مقایسه عملکرد مدل اسکلتی-عضلانی راجاگوپال و نسخه های بروزشدهی آن در پیش بینی نیروی تماسی مفصل زانو حین دو فعالیت راه رفتن و اسکات، مکانیک سازه ها و شاره ها، د. 11، ش. 5، ص 83-94، 1400. [20] ایمانی نژاد ز.، آر تیلور و.، آر اسمیت ک. و خلیلی خ.، بررسی اثر عدم قطعیت در مسیر ماهیچهها بر نیروی تماسی مفصل زانو در یک مدل اسکلتی-عضلانی بهبود یافته حین حرکت اسکات، مهندسی مکانیک دانشگاه تبریز, د. 52، ش. 2، ص 345-352، 1401. [21] Delp S. L., Loan J. P., Hoy M. G., Zajac F. E., Topp E. L., and Rosen J. M., An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures, IEEE Trans Biomed Eng, Vol. 37, No. 8, pp. 757-67, 1990. [22] Anderson F. C. and Pandy M. G., Dynamic optimization of human walking, J Biomech Eng, Vol. 123, No. 5, pp. 381-90, 2001. [23] Yamaguchi G. T. and Zajac F. E., A planar model of the knee joint to characterize the knee extensor mechanism, J Biomech, Vol. 22, No. 1, pp. 1-10, 1989. [24] Butler A. B., Caruntu D. I., and Freeman R. A., Knee Joint Biomechanics for Various Ambulatory Exercises Using Inverse Dynamics in OpenSim, in ASME 2017 International Mechanical Engineering Congress and Exposition, Vol. 3: Biomedical and Biotechnology Engineering, 2017. [25] Bigham H. J., Sex differences in lower limb muscle activation patterns in participants with knee osteoarthritis and healthy controls, Université d'Ottawa/University of Ottawa, 2015. [26] Wang L. and Wang C. J., Preliminary study of a customised total knee implant with musculoskeletal and dynamic squatting simulation, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 233, No. 10, pp. 1010-1023, 2019. [27] Mokhtarzadeh H., Ewing K., Janssen I., Yeow C.-H., Brown N., and Lee P. V. S., The effect of leg dominance and landing height on ACL loading among female athletes, Journal of Biomechanics, Vol. 60, pp. 181-187, 2017. [28] Rajagopal A., Dembia C. L., DeMers M. S., Delp D. D., Hicks J. L., and Delp S. L., Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait, , IEEE Trans Biomed Eng, Vol. 63, No. 10, pp. 2068-79, 2016. [29] Hosseininasab S. H., Vollenweider A. C., Taylor W. R., and Lorenzetti S. R., Uncertainty quantification in joint reaction force analysis during a simulated squat activity, 15th International Symposium on Computer Methods in Biomechanic and Biomedical Engineering and 3rd Conference on Imaging and Visualization, 2018. [30] Lai A. K. M., Arnold A. S., and Wakeling J. M., Why are Antagonist Muscles Co-activated in My Simulation? A Musculoskeletal Model for Analysing Human Locomotor Tasks, Ann Biomed Eng, Vol. 45, No. 12, pp. 2762-2774, 2017. [31] Catelli D. S., Wesseling M., Jonkers I., and Lamontagne M., A musculoskeletal model customized for squatting task, Comput Methods Biomech Biomed Engin, Vol. 22, No. 1, pp. 21-24, Jan 2019. [32] Golfeshan N. et al., Upper body postures effect on neuromuscular activities of the lower limb during a squat: musculoskeletal modeling, Gait & Posture, Vol. 81, pp. 107-108, 2020. [33] Catelli D. S., Bedo B. L.S., Santiag P. R. P., Lamontagno M., Comparing forward to inverse frameworks to obtain hip joint kinematics during a squat task, Gait & Posture, Vol. 73, pp. 297-298, 2019. [34] Gaffney B. M. M., Harris-Hayes M., Clohisy J. C., and Harris M. D., Effect of simulated rehabilitation on hip joint loading during single limb squat in patients with hip dysplasia, Journal of Biomechanics, Vol. 116, pp. 110183, 2021. [35] Lu Y., Mei Q., Peng H.-T., Li J., Wei C., and Gu Y., A Comparative Study on Loadings of the Lower Extremity during Deep Squat in Asian and Caucasian Individuals via OpenSim Musculoskeletal Modelling, BioMed Research International, Vol. 2020, p. 7531719, 2020. [36] SINATRA M. and Quaranta M., Biomechanical model and machine learning algorithms comparison for customized training biofeedback on ISS, 2021. [37] Lu Y., Mei Q., Pen H.-T., Li J., Wei C., and Gu Y., A Comparative Study on Loadings of the Lower Extremity during Deep Squat in Asian and Caucasian Individuals via OpenSim Musculoskeletal Modelling, BioMed Research International, Vol. 2020, 2020. [38] Catelli D., Bedo B., Santiago P., and Lamontagne M., Comparing forward to inverse frameworks to obtain hip joint kinematics during a squat task, Gait & Posture, Vol. 73, pp. 297-298, 2019. [39] Catelli D. S., Kowalski E., Beaulé P. E., and Lamontagne M., Muscle and Hip Contact Forces in Asymptomatic Men With Cam Morphology During Deep Squat, Front Sports Act Living, Vol. 3, pp. 716626-716626, 2021. [40] Bernardes W., The influence of the knee alignment on the joint loading and on the performance of rehabilitation exercises, Itä-Suomen yliopisto, 2020. [41] Winby C. R., Lloyd D. G., Besier T. F., and Kirk T. B., Muscle and external load contribution to knee joint contact loads during normal gait , J Biomech, Vol. 42, No. 14, pp. 2294-300, 2009. [42] Kumar D., Rudolph K. S., and Manal K. T., EMG-driven modeling approach to muscle force and joint load estimations: case study in knee osteoarthritis , Journal of orthopaedic research : official publication of the Orthopaedic Research Society, Vol. 30, No. 3, pp. 377-83, 2012. [43] Gerus P. et al., Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces, Journal of biomechanics, Vol. 46, No. 16, pp. 2778-2786, 2013. [44] Lerner Z. F., DeMers M. S., Delp S. L., and Browning R. C., How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces, J Biomech, Vol. 48, No. 4, pp. 644-650, 2015. [45] Bedo B. L. S., Catelli D. S., Lamontagne M., and Santiago P. R. P., A custom musculoskeletal model for estimation of medial and lateral tibiofemoral contact forces during tasks with high knee and hip flexions, , Comput Methods Biomech Biomed Engin, Vol. 23, No. 10, pp. 658-663, 2020. [46] Gullett J. C., Tillman M. D., Gutierrez G. M., and Chow J. W., A biomechanical comparison of back and front squats in healthy trained individuals, The Journal of Strength & Conditioning Research, Vol. 23, No. 1, pp. 284-292, 2009. [47] Kinney A. L., Besier T. F., D'Lima D. D., and Fregly B. J., Update on grand challenge competition to predict in vivo knee loads, J Biomech Eng, Vol. 135, No. 2, p. 021012, 2013. [48] Schellenberg F., Oberhofer K., Taylor W. R., and Lorenzetti S., Review of Modelling Techniques for In Vivo Muscle Force Estimation in the Lower Extremities during Strength Training, Computational and mathematical methods in medicine, Vol. 2015, pp. 483921, 2015. [49] Trepczynski A. et al., Patellofemoral joint contact forces during activities with high knee flexion, Journal of orthopaedic research : official publication of the Orthopaedic Research Society, Vol. 30, No. 3, pp. 408-15, 2012. | ||
آمار تعداد مشاهده مقاله: 162 تعداد دریافت فایل اصل مقاله: 88 |