- [1] L. Angermann and S. Wang, Convergence of a fitted finite volume method for the penalized Black–Scholes equation governing European and American Option pricing, Numer. Math., 106 (2007), 1–40.
- [2] F. Baustian, K. Filipov´a, and J. Posp´ıˇsil, Solution of option pricing equations using orthogonal polynomial expan- sion, Appl. Math. (N. Y.), 66 (2021), 553–582.
- [3] Y. Y. Belov, Inverse problems for partial differential equations, In Inverse Problems for Partial Differential Equations, De Gruyter, 2012.
- [4] F. Black and M. Scholes, The pricing of options and corporate liabilities, In World Scientific Reference on Con- tingent Claims Analysis in Corporate Finance, 1 (2019), 3–21.
- [5] Z. Cen and A. Le, A robust finite difference scheme for pricing American put options with singularity-separating method, Numer. Algorithms, 53 (2010), 497–510.
- [6] Z. Cen and A. Le, A robust and accurate finite difference method for a generalized Black–Scholes equation, J. Comput. Appl. Math., 235 (2011), 3728–3733.
- [7] Y. Chen, H. Yu, X. Meng, X. Xie, M. Hou, and J. Chevallier, Numerical solving of the generalized Black-Scholes differential equation using Laguerre neural network, Digital Signal Processing, 112 (2021), 103003.
- [8] R. Company, L. J´odar, and J. R. Pintos, A consistent stable numerical scheme for a nonlinear option pricing model in illiquid markets, Math. Comput. Simul., 82 (2012), 1972–1985.
- [9] R. Courant, Variational methods for the solution of problems of equilibrium and vibrations, Lect. Notes Pure Appl. Math., (1943), 1–23.
- [10] J. C. Cox, S. A. Ross, and M. Rubinstein, Option pricing: A simplified approach, J. Financ. Econ., 7 (1979), 229–263.
- [11] M. Cui and Y. Lin, Nonlinear numerical analysis in reproducing kernel space, Nova Science Publishers, Inc., 2009.
- [12] G. E. Fasshauer, Meshfree approximation methods with MATLAB, World Scientific, 2007.
- [13] G. E. Fasshauer and M. J. McCourt, Kernel-based approximation methods using Matlab, World Scientific Pub- lishing Company, 2015.
- [14] M. Fardi, A kernel-based pseudo-spectral method for multi-term and distributed order time-fractional diffusion equations, Numerical Methods for Partial Differential Equations, 39 (2023), 2630–2651.
- [15] M. Fardi, A kernel-based method for solving the time-fractional diffusion equation, Numerical Methods for Partial Differential Equations, 39 (2023), 2719–2733.
- [16] M. Fardi and M. Ghasemi, Numerical solution of singularly perturbed 2D parabolic initial-boundary-value problems based on reproducing kernel theory: Error and stability analysis, Numerical Methods for Partial Differential Equations, 38 (2022), 876–903.
- [17] M. Fardi and Y. Khan, Numerical simulation of squeezing Cu-Water nanofluid flow by a kernel-based method, International Journal of Modeling, Simulation, and Scientific Computing, 13 (2021).
- [18] A. Friedman, Partial differential equations of parabolic type, Courier Dover Publications, 2008.
- [19] A. Hrennikoff, Solution of problems of elasticity by the framework method, J. Appl. Mech., 8 (1941), A169–A175.
- [20] J. Hull and A. White, The use of the control variate technique in option pricing, Journal of Financial and Quantitative analysis, 23 (1988), 237–251.
- [21] M. K. Kadalbajoo, L. P. Tripathi, and P. Arora, A robust nonuniform B-spline collocation method for solving the generalized Black–Scholes equation, IMA J. Numer. Anal., 34 (2014), 252–278.
- [22] M. K. Kadalbajoo, L. P. Tripathi, and A. Kumar, A cubic B-spline collocation method for a numerical solution of the generalized Black–Scholes equation, Math. Comput. Modelling, 55 (2012), 1483–1505.
- [23] E. J. Kansa, Multiquadrics—A scattered data approximation scheme with applications to computational fluid- dynamics—I surface approximations and partial derivative estimates, Comput. Math. Appl., 19 (1990), 127–145.
- [24] E. J. Kansa, Multiquadrics—A scattered data approximation scheme with applications to computational fluid- dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations, Comput. Math. Appl., 19 (1990), 147–161.
- [25] D. C. Lesmana and S. Wang, An upwind finite difference method for a nonlinear Black–Scholes equation governing European option valuation under transaction costs, Appl. Math. Comput., 219 (2013), 8811–8828.
- [26] W. K. Liu, S. Li, and H. S. Park, Eighty years of the finite element method: Birth, evolution, and future, Arch. Comput. Methods Eng., (2022), 1–23.
- [27] R. C. Merton, Theory of rational option pricing, The Bell Journal of economics and management science, 4 (1973), 141–183.
- [28] D. Prathumwan and K. Trachoo, On the solution of two-dimensional fractional Black–Scholes equation for Euro- pean put option, Adv. Difference Equ., 2020 (2020), 1–9.
- [29] S. C. S. Rao, Numerical solution of generalized Black–Scholes model, Appl. Math. Comput., 321 (2018), 401–421.
- [30] P. Roul and V.P. Goura, A new higher order compact finite difference method for generalised Black–Scholes partial differential equation: European call option, J. Comput. Appl. Math., 363 (2020), 464–484.
- [31] R. Valkov, Fitted finite volume method for a generalized Black–Scholes equation transformed on finite interval, Numer. Algorithms, 65 (2014), 195–220.
- [32] R. Valkov, Convergence of a finite volume element method for a generalized Black-Scholes equation transformed on finite interval, Numer. Algorithms, 68 (2015), 61–80.
- [33] S. Wang, A novel fitted finite volume method for the Black–Scholes equation governing option pricing, IMA J. Numer. Anal., 24 (2004), 699–720.
- [34] Y. Wang, M. Du, F. Tan, Z. Li, and T. Nie, Using reproducing kernel for solving a class of fractional partial differential equation with non-classical conditions, Appl. Math. Comput., 219 (2013), 5918–5925.
- [35] D. Wei, Existence, uniqueness, and numerical analysis of solutions of a quasilinear parabolic problem, SIAM J. Numer. Anal., 29 (1992), 484–497.
- [36] H. Zhang, F. Liu, I. Turner, and Q. Yang, Numerical solution of the time fractional Black–Scholes model governing European options, Comput. Math. Appl., 71 (2016), 1772–1783.
|