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Abstract

This study examines the balanced Maruyama with two step approximations of stochastic Hopfield neural networks

with delay. The main aim of this paper is to discover the conditions under which the exact solutions remain
stable for the balanced Maruyama with two-step approximations of stochastic delay Hopfield neural networks

(SDHNN). The semi-martingale theorem for convergence is used to demonstrate the almost sure exponential

stability of balanced Maruyama with two-step approximations of stochastic delay Hopfield networks. Additionally,
the numerical balanced Euler approximation’s stability conditions are compared. Our theoretical findings are

illustrated with numerical experiments.
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1. Introduction

Stochastic Hopfield neural networks are a subject of great interest among young researchers due to their diverse
range of applications, such as pattern recognition, classification, associative memory, optimization, signal and image
processing, and parallel computation. However, finding analytical solutions for stochastic differential equations are
often limited, and therefore, numerical methods are commonly used to handle them. In this context, the investigation
of the stability properties of numerical methods is essential.

Several studies have explored the stability properties of numerical methods for stochastic differential equations,
including mean square stability and almost sure exponential stability. The almost sure (a.s.) exponential stability
of numerical methods was investigated in [4]. Moreover, the stability analysis of numerical methods for SDE with a
delay term has been explored by many authors, including Cao et al. [3, 6], Higuchi [4], Liu et al. [7], Mao [8], Tan et
al. [12]. Such as, the exponential stability of SDHNN was examined in [13, 14], and the stability analysis using the
theorem of sem-imartingale convergence and Lyapunov function was explored in [5]. Blythe et al. in [1] initiated to
study the stability of stochastic neural networks. In subsequent studies [7, 11], the exponential mean-square stability
of numerical solutions for SDHNN was explored.

Furthermore, specific numerical methods have also been studied for their stability properties. Examples of these
investigations include the exploration of the exponential stability in mean square of two-step Maruyama methods for
SDEs with time delay in [3], and the study of asymptotic stability in mean square of two-step Maruyama methods for
nonlinear neutral SDEs with constant time delay in [6]. Additionally, [2] delved into the method of solutions using
linear multi-step Maruyama schemes.

The primary focus of this paper is to investigate the almost sure (a.s.) exponentially stable of balanced Maruyama
with two-step approximations for non-linear SDHNN. The goal is to determine the stability criteria for these methods
as applied to the mentioned networks. The paper consists of five sections, with the second section presenting the
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notations and stability conditions for analytical solutions. In section three, establishing the a.s exponential stability
for the balanced Maruyama with two-step approximations for these networks. Finally, numerical examples to validate
the theoretical findings.

2. Model Equations

Consider the stochastic Hopfield neural networks with delays of the form{
dy(t) = [−Cy(t) +Af (y(t)) +Bg (u(t))] dt+ σ (y(t)) dW (t), t ≥ 0,
y(t) = ζ(t), −τi ≤ t ≤ 0.

(2.1)

The number of neurons in the SDHNN, denoted by n ≥ 1, is specified in the aforementioned system, under consideration
involves a state vector y(t) = [y1(t), ..., yn(t)]T ∈ Rn, which corresponds to n neurons. The vector u(t) = [y1(t −
τ1), ..., yn(t − τn)]T . Additionally, the vector functions f(y(t)) = [f1(y1(t)), ..., fn(yn(t))]T and g(u(t)) = [g1(y1(t −
τ1)), ..., gn(yn(t−τn))]T represents the neuron activation functions yj(t) is the state variable of the jth neuron at time t,
fj , and gj denote the output of the jth unit at time t and t−τj respectively, and the diagonal matrix C = (c1, c2, ..., cn)
has positive entries. In the given context, ci is a positive constant that denotes the speed at which the ith unit resets
its potential to the resting state when it is not connected to the network and is subjected to external stochastic
perturbations. The values aij and bij determine the influence of the jth unit on the ith unit, while τj is a non-negative
constant representing the transmission delay. The connection weight matrix A = (aij)n×n and the discretely delayed
connection weight matrix B = (bij)n×n are also part of the system. The state vector y(t) satisfies y(t) = ζ(t) on
the initial segment [−τ, 0], where ζ(t) = [ζ1(t), ..., ζn(t)]T is a given function in C([−τ, 0],Rn), and τ is the maximum
value of the delays. Finally, the diagonal matrix σ(y(t)) = (σ1(y1(t)), ..., σn(yn(t))) has σi(0) = 0, and the vector
W (t) = [W1(t), ...,Wn(t)]T ∈ Rn. σi are continuous functions. Let fi and gi be functions in C2(D;R)

⋂
L 2([0, T ];R)

and σi be in C1 (D;R)
⋂

L 2 ([0, T ];R). Here Cl (D;R) denotes the family of continuously l-times differentiable real-
valued function defined on D, while L l ([0, T ];R) denotes the family of all real-valued measurable {Ft}-adapted

stochastic processes {f(t)}t∈[0,T ] such that
∫ T

0
|f(t)|l dt < +∞. We put into practise the fundamental presumptions

assumptions to get our results in [10, 11].
(H1) f(0) ≡ 0, g(0) ≡ 0, and σ(0) ≡ 0.
(H2) Both f(x) and g(x) satisfy the Lipschitz condition. That is for each i = 1, 2, · · · , n, there exist constants κi > 0,
ρi > 0, such that

|fi(x)− fi(y)| ≤ κi |x− y| ,
|gi(x)− gi(y)| ≤ ρi |x− y| , ∀x, y ∈ Rn.

(H3) σi(y) satisfies the Lipschitz condition, and there are non-negative constants µi such that

|σi (y1)− σi (y2)| ≤ µi |y1 − y2| .

Definition 2.1. [8, 10] The incidental solution for equations (2.1) is said to be exponential stability with mean square
in case there is a combination constants λ > 0, J > 0 such that

E |y(t, ζ)|2 ≤ J |ζ|2 e−λt, t ≥ 0,

Is true for every ζ ∈ CbF0
([−τ, 0],Rn). In this case

limsupt→∞
1

t
lnE |y(t, ζ)|2 ≤ −λ.

Theorem 2.2. [11, 14] If (2.1) satisfies (H1)-(H3), the following holds.
(H4) For i = 1, 2, · · · , n,

−2ci +

n∑
j=1

|aij |κj +

n∑
j=1

|bij | ρj +

n∑
j=1

|aji|κi +

n∑
j=1

|bji| ρi +

n∑
j=1

(
µ2
ij

)
< 0.

Then (2.1) is exponentially stable in mean square.



138 S. KOPPERUNDEVI

(H5)

n∑
j=1

|aij |κj +

n∑
j=1

|bij | ρj ≤
n∑
j=1

|aji|κi +

n∑
j=1

|bji| ρi.

Theorem 2.3. [7, 10] Under the assumptions of hypotheses (H1)-(H5), it can be concluded that the solution to
equation (2.1) exhibits exponential stability with almost sure.

Definition 2.4. [8] The incidental solution for equation (2.1) is said to be a.s. exponentially stable in case there is a
constant η > 0 such that

limsupt→∞
1

t
ln |y(t, ζ)| ≤ −η, almost surely

for any initial data ζ ∈ CbF0
([−τ, 0],Rn).

3. Almost sure exponential stability for balanced Maruyama with two-step Methods

Our focus in this section is to examine the almost sure exponential stability properties of the balanced Maruyama
with two-step methods when applied to SDHNN as presented in equation (2.1). Using the balanced Maruyama with
two-step approximations on equation (2.1), we obtain

1∑
r=−1

αrz
k−r =

1∑
r=−1

βr
[
−Czk−r +Af

(
zk−r

)
+Bg

(
zk−m−r

)]
∆

+

1∑
r=0

γr
(
σ
(
zk−r

)
∆W k−r)+Bk[zk − zk+1], k = 1, 2, · · · , N. (3.1)

Here the n× n matrix B(zk) is given by

Bk = B0(zk)∆ +B1(zk) |∆W k
n |,

The matrices B0 and B1 are referred to as control functions and are typically chosen as constants. These control
functions are generally represented as matrices and are uniformly bounded. It is important to note that specific
conditions, as defined in [9, 12], must be satisfied by these control functions. If the parameters of the balanced
Maruyama with two-step approximations are selected such that they satisfy the consistency condition.

1∑
j=−1

αj = 0, 2α−1 + α0 =

1∑
j=−1

βj , α−1 = γ0, α−1 + α0 = γ1. (3.2)

and

α−1 = 1, −1 ≤ α0 < 0, β0 = β1 = 0, (3.3)

then we get

α1 = −1− α0, β−1 = 2 + α0, γ0 = 1, γ1 = 1 + α0. (3.4)

Upcoming theorem, we utilize the approach outlined in [7] to examine the nature of the balanced Maruyama
with two-step approximations [2, 3] under the exponential stability with almost sure. However, when applying the
proof method described in [7, 9], our calculation results in a value that differs for γ in the numerical section. Our
numerical analysis shows that the balanced Maruyama with two-step numerical approximations outperforms the two-
step Maruyama numerical approximations in terms of stability. With that being said, we will now provide the proof
of the almost sure stability of the two-step Maruyama methods for SDHNN.
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Theorem 3.1. Assuming that hypotheses (H1)-(H5) are satisfied, let γ be a positive number determined by the
expression in question, γ0 > 0 is the number defined by equation (3.12), let γ∗ be the maximum of γ and γ0, and let

ε ∈ (0, γ
∗

2 ) be an arbitrary value. Provided that ∆ is less than a certain ∆0, then for all finite-valued random variables
that are measurable with respect to F0, ζ(k∆), k = −m,−m+ 1,−m+ 2, · · · , 0, the balanced Maruyama with two-step
approximations (3.2) are a.s. exponentially stable. In other words, we obtain:

lim sup
k→∞

log
∣∣zk∣∣
k∆

≤ −γ
∗

2
+ ε, a.s. (3.5)

Proof. Expanding (3.1) and substituting in (3.3), we get

zk+1 + α0z
k − (1 + α0)zk−1 = (2 + α0)

[
−Czk+1 +Af

(
zk+1

)
+Bg

(
zk−m+1

)]
∆

+σ
(
zk
)

∆W k + (1 + α0)σ
(
zk−1

)
∆W k−1 +Bk(zk − zk+1).

Thus, we get

zk+1 [1 + (2 + α0)C∆ +Bk] = (Bk − α0)zk + (1 + α0)zk−1 + (2 + α0)
[
Af
(
zk+1

)]
∆

+(2 + α0)Bg
(
zk−m+1

)
∆ + σ

(
zk
)

∆W k + (1 + α0)σ
(
zk−1

)
∆W k−1. (3.6)

Utilizing the balanced Maruyama with two-step methods and under (H2) and (H3), we obtain:

[1 + (2 + α0)C∆ +Bk]2
∣∣∣zk+1

∣∣∣2 =

〈
(Bk − α0)zk + (1 + α0)zk−1 + (2 + α0)

[
Af
(
zk+1

)
+Bg

(
zk−m+1

)]
∆

+ σ
(
zk
)

∆W k + (1 + α0)σ
(
zk−1

)
∆W k−1, (Bk − α0)zk + (1 + α0)zk−1

+ (2 + α0)
[
Af
(
zk+1

)
+Bg

(
zk−m+1

)]
∆ + σ

(
zk
)

∆W k + (1 + α0)σ
(
zk−1

)
∆W k−1

〉
,

= (Bk − α0)2
∣∣∣zk∣∣∣2 + (1 + α0)2

∣∣∣zk−1
∣∣∣2 + 2(Bk − α0)zk

[
(1 + α0)zk−1

]
+ 2(Bk − α0)zk

[
(2 + α0)

[
Af
(
zk+1

)
+Bg

(
zk−m+1

)]
∆

]
+ 2(1 + α0)zk−1

[
(2 + α0)

[
Af
(
zk+1

)
+Bg

(
zk−m+1

)]
∆

]
+

[
(2 + α0)Af

(
zk+1

)
∆

+ (2 + α0)Af
(
zk+1

)
∆

]2
+
(
σ
(
zk
)

∆W k
)2

+(1 + α0)2
(
σ
(
zk−1

)
∆W k−1

)2
+ 2

〈
(Bk − α0)zk + (1 + α0)zk−1 + (2 + α0)

[
Af
(
zk+1

)]
+ (2 + α0)

[
Bg
(
zk−m+1

)]
, σ
(
zk
)

∆W k + (1 + α0)σ
(
zk−1

)
∆W k−1

〉
≤ (Bk − α0)2

∣∣∣zk∣∣∣2 + (1 + α0)2
∣∣∣zk−1

∣∣∣2 + 2(Bk − α0)
∣∣∣zk∣∣∣ (1 + α0)

∣∣∣zk−1
∣∣∣

+ 2(Bk − α0)
∣∣∣zk∣∣∣ (2 + α0)Aκ

∣∣∣zk+1
∣∣∣∆ + 2(Bk − α0)

∣∣∣zk∣∣∣ (2 + α0)Bρ
∣∣∣zk−m+1

∣∣∣∆
+ 2(1 + α0)|zk−1|(2 + α0)Aκ

∣∣∣zk+1
∣∣∣∆ + 2(1 + α0)|zk−1|(2 + α0)Bρ

∣∣∣zk−m+1
∣∣∣∆

+ 2(2 + α0)2A2κ2
∣∣∣zk+1

∣∣∣2 ∆2 + 2(2 + α0)2B2ρ2
∣∣∣zk−m+1

∣∣∣2 ∆2 + µ2
∣∣∣zk∣∣∣2 · ∣∣∣∆W k

∣∣∣2
+ (1 + α0)2µ2

∣∣∣zk−1
∣∣∣2 · ∣∣∣∆W k−1

∣∣∣2 + 2

〈
(Bk − α0)zk + (1 + α0)zk−1 + (2 + α0)

[
Af
(
zk+1

)]
∆

+ (2 + α0)
[
Bg
(
zk−m+1

)]
∆, σ

(
zk
)

∆W k + (1 + α0)σ
(
zk−1

)
∆W k−1

〉
,



140 S. KOPPERUNDEVI

We rewrite above equation then we get,[
(1 + (2 + α0)C∆ +Bk)

2 − (2 + α0)2∆2
(
A2κ2 +AκBρ

)
− (Bk + 1)(2 + α0)Aκ∆

] ∣∣zk+1
∣∣2

≤ (Bk − α0)2
∣∣zk∣∣2 + (1 + α0)2

∣∣zk−1
∣∣2 + (Bk − α0)(1 + α0)

∣∣zk∣∣2 + (Bk − α0)(1 + α0)
∣∣zk−1

∣∣2
+(Bk − α0)

∣∣zk∣∣2 (2 + α0)Aκ∆ + (Bk − α0)
∣∣zk∣∣2 (2 + α0)Bρ∆ + (Bk − α0)(2 + α0)Bρ

∣∣zk−m+1
∣∣2 ∆

+(1 + α0)|zk−1|2(2 + α0)Aκ∆ + (1 + α0)|zk−1|2(2 + α0)Bρ∆ + (1 + α0)(2 + α0)Bρ
∣∣zk−m+1

∣∣2 ∆

+(2 + α0)2ABκρ
∣∣zk−m+1

∣∣2 ∆2 + (2 + α0)2B2ρ2
∣∣zk−m+1

∣∣2 ∆2 + µ2
∣∣zk∣∣2 ∆

+(1 + α0)2µ2
∣∣zk−1

∣∣2 ∆ + 2

〈
(Bk − α0)zk + (1 + α0)zk−1 + (2 + α0)

[
Af
(
zk+1

)]
∆

+(2 + α0)
[
Bg
(
zk−m+1

)]
∆, σ

(
zk
)

∆W k + (1 + α0)σ
(
zk−1

)
∆W k−1

〉
≤
{

(Bk − α0)2 + (Bk − α0)(1 + α0) + (Bk − α0)(2 + α0)Aκ∆ + (Bk − α0)(2 + α0)Bρ∆ + µ2∆
} ∣∣zk∣∣2

+
{

(1 + α0)2 + (Bk − α0)(1 + α0) + (1 + α0)(2 + α0)Aκ∆ + (1 + α0)(2 + α0)Bρ∆ + (1 + α0)2µ2∆
} ∣∣zk−1

∣∣2
+
{

(Bk + 1)(2 + α0)Bρ∆ + (2 + α0)2ABκρ∆2 + (2 + α0)2B2ρ2∆2
} ∣∣zk−m+1

∣∣2 ∆

+2

〈
(Bk − α0)zk + (1 + α0)zk−1 + (2 + α0)

[
Af
(
zk+1

)]
∆ + (2 + α0)

[
Bg
(
zk−m+1

)]
∆,

σ
(
zk
)

∆W k + (1 + α0)σ
(
zk−1

)
∆W k−1

〉
, (3.7)

From equation (3.7) we get,

Q|zk+1|2 ≤
[ {

(Bk − α0)2 + (Bk − α0)(1 + α0) + (Bk − α0)(2 + α0) (Aκ+Bρ) ∆

+µ2∆
}
|zk|2 +

{
(1 + α0)2 + (Bk − α0)(1 + α0) + (1 + α0)(2 + α0)Aκ∆

+(1 + α0)(2 + α0)Bρ∆ + (1 + α0)2µ2∆

}
|zk−1|2 +

{
(Bk + 1)(2 + α0)Bρ∆

+(2 + α0)2ABκρ∆2 + (2 + α0)2B2ρ2∆2

}
|zk−m+1|2 +mk

]
, (3.8)

where

Q = (1 + (2 + α0)C∆ +Bk)
2 − (2 + α0)2∆2

(
A2κ2 +AκBρ

)
− (Bk + 1)(2 + α0)Aκ∆,

mk = 2

〈
(Bk − α0)zk + (1 + α0)zk−1 + (2 + α0)

[
Af
(
zk+1

)]
∆ + (2 + α0)

[
Bg
(
zk−m+1

)]
∆,

σ
(
zk
)

∆W k + (1 + α0)σ
(
zk−1

)
∆W k−1

〉
.

For any constant C > 1, we have

D(k+1)∆|zk+1|2 −Dk∆|zk|2 = D(k+1)∆
(
|zk+1|2 − |zk|2

)
+
(
D(k+1)∆ −Dk∆

)
|zk|2
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By this fact and equation (3.8) give

Q
[
D(k+1)∆|zk+1|2 −Dk∆|zk|2

]
≤
{

(Bk − α0)2 + (Bk − α0)(1 + α0) + (Bk − α0)(2 + α0)Aκ∆ + (Bk − α0)(2 + α0)Bρ∆

+µ2∆2 −QD−∆
}
D(k+1)∆|zk|2 +

{
(1 + α0)2 + (Bk − α0)(1 + α0) + (1 + α0)(2 + α0)Aκ∆

+(1 + α0)(2 + α0)Bρ∆ + (1 + α0)2µ2∆

}
D(k+1)∆|zk−1|2 +

{
(Bk + 1)(2 + α0)Bρ∆

+(2 + α0)2ABκρ∆2 + (2 + α0)2B2ρ2∆2

}
D(k+1)∆|zk−m+1|2 +mkD

(k+1)∆.

Hence, we acquire

Q
[
Dk∆|zk|2

]
≤ Q

[
|z0|2

]
+
{

(Bk − α0)2 + (Bk − α0)(1 + α0) + (Bk − α0)(2 + α0)Aκ∆

+(Bk − α0)(2 + α0)Bρ∆ + µ2∆−QD−∆
} k−1∑
s=0

D(s+1)∆|zs|2 +

{
(1 + α0)2

+(Bk − α0)(1 + α0) + (1 + α0)(2 + α0)Aκ∆ + (1 + α0)(2 + α0)Bρ∆

+(1 + α0)2µ2∆

} k−1∑
s=0

D(s+1)∆|zs−1|2 +

{
(Bk + 1)(2 + α0)Bρ∆

+(2 + α0)2ABκρ∆2 + (2 + α0)2B2ρ2∆2

} k−1∑
s=0

D(s+1)∆|zs−m+1|2 +mk

k−1∑
s=0

D(s+1)∆,

where
∑k−1
s=0 D

(s+1)∆mk = Mk is a martingale with M0 = 0. Note that

k−1∑
s=0

D(s+1)∆|zs−m+1|2 = D(m−1)∆
−1∑

s=−m+1

D(s+1)∆|zs|2 +D(m−1)∆
k−1∑
s=0

D(s+1)∆|zs|2

−D(m−1)∆
k−1∑

s=k−m+1

D(s+1)∆|zs|2,

and

k−1∑
s=0

D(s+1)∆|zs−1|2 = D∆
−1∑
s=−1

D(s+1)∆|zs|2 +D∆
k−1∑
s=0

D(s+1)|zs|2 −D∆
k−1∑
s=k−1

D(s+1)∆|zs|2.
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Therefore, we have

Q
[
Dk∆|zk|2

]
≤ Q

[
|z0|2

]
+
{

(Bk − α0)2 + (Bk − α0)(1 + α0) + (Bk − α0)(2 + α0)Aκ∆

+(Bk − α0)(2 + α0)Bρ∆ + µ2∆−QD−∆
} k−1∑
s=0

D(s+1)∆|zs|2 +

{
(1 + α0)2

+(Bk − α0)(1 + α0) + (1 + α0)(2 + α0)Aκ∆ + (1 + α0)(2 + α0)Bρ∆

+(1 + α0)2µ2∆

}
×

(
D∆

−1∑
s=−1

D(s+1)∆|zs|2 +D∆
k−1∑
s=0

D(s+1)|zs|2

−D∆
k−1∑
s=k−1

D(s+1)∆|zs|2
)

+

{
(Bk − α0)(2 + α0)Bρ+ (1 + α0)(2 + α0)Bρ∆

+(2 + α0)2ABκρ∆2 + (2 + α0)2B2ρ2∆2

}
×
(
D(m−1)∆

−1∑
s=−m+1

D(s+1)∆|zs|2

+D(m−1)∆
k−1∑
s=0

D(s+1)∆|zs|2 −D(m−1)∆
k−1∑

s=k−m+1

D(s+1)∆|zs|2
)

+Mk.

Thus, we get

Q
[
Dk∆|zk|2

]
+

{
(1 + α0)2 + (Bk − α0)(1 + α0) + (1 + α0)(2 + α0)Aκ∆ + (1 + α0)(2 + α0)Bρ∆

+(1 + α0)2µ2∆

}
×

(
D∆

k−1∑
s=k−1

D(s+1)∆|zs|2
)

+

{
(Bk − α0)(2 + α0)Bρ+ (1 + α0)

·(2 + α0)Bρ∆ + (2 + α0)2ABκρ∆2 + (2 + α0)2B2ρ2∆2

}
×
(
D(m−1)∆

k−1∑
s=k−m+1

D(s+1)∆|zs|2
)

≤ Q
[
|z0|2

]
+
{

(Bk − α0)2 + (Bk − α0)(1 + α0) + (Bk − α0)(2 + α0)Aκ∆ + (Bk − α0)(2 + α0)Bρ∆

+µ2∆−QD−∆
} k−1∑
s=0

D(s+1)∆|zs|2 +

{
(1 + α0)2 + (Bk − α0)(1 + α0) + (1 + α0)(2 + α0)Aκ∆

+(1 + α0)(2 + α0)Bρ∆ + (1 + α0)2µ2∆

}
×

(
D∆

−1∑
s=−1

D(s+1)∆|zs|2 +D∆
k−1∑
s=0

D(s+1)|zs|2
)

+

{
(Bk − α0)(2 + α0)Bρ+ (1 + α0)(2 + α0)Bρ∆ + (2 + α0)2ABκρ∆2 + (2 + α0)2B2ρ2∆2

}
×
(
D(m−1)∆

−1∑
s=−m+1

D(s+1)∆|zs|2 +D(m−1)∆
k−1∑
s=0

D(s+1)∆|zs|2
)

+Mk.



CMDE Vol. 12, No. 1, 2024, pp. 136-148 143

Therefore, we have

Q
[
Dk∆|zk|2

]
+

{
(1 + α0)2 + (Bk − α0)(1 + α0) + (1 + α0)(2 + α0)Aκ∆ + (1 + α0)(2 + α0)Bρ∆

+(1 + α0)2µ2∆

}
×

(
Dm∆

k−1∑
s=k−1

D(s+1)∆|zs|2
)

+

{
(Bk − α0)(2 + α0)Bρ+ (1 + α0)(2 + α0)Bρ∆

+(2 + α0)2ABκρ∆2 + (2 + α0)2B2ρ2∆2

}
×
(
D(m−1)∆

k−1∑
s=k−m+1

D(s+1)∆|zs|2
)
≤ Yk,

where

Yk = Q
[
|z0|2

]
+
{

(Bk − α0)2 + (Bk − α0)(1 + α0) + (Bk − α0)(2 + α0)Aκ∆ + (Bk − α0)(2 + α0)Bρ∆

+µ2∆−QD−∆
} k−1∑
s=0

D(s+1)∆|zs|2 +

{
(1 + α0)2 + (Bk − α0)(1 + α0) + (1 + α0)(2 + α0)Aκ∆

+(1 + α0)(2 + α0)Bρ∆ + (1 + α0)2µ2∆

}
×

(
D∆

−1∑
s=−1

D(s+1)∆|zs|2 +D∆
k−1∑
s=0

D(s+1)|zs|2
)

+

{
(Bk − α0)(2 + α0)Bρ∆ + (1 + α0)(2 + α0)Bρ∆ + (2 + α0)2ABκρ∆2 + (2 + α0)2B2ρ2∆2

}
×
(
D(m−1)∆

−1∑
s=−m+1

D(s+1)∆|zs|2 +D(m−1)∆
k−1∑
s=0

D(s+1)∆|zs|2
)

+Mk.

Let us consider the following function:

Ψ(D) =
{

(Bk − α0)2 + (Bk − α0)(1 + α0) + (Bk − α0)(2 + α0)Aκ∆ + (Bk − α0)(2 + α0)Bρ∆

+µ2∆−QD−∆
} k−1∑
s=0

D(s+1)∆|zs|2 +

{
(1 + α0)2 + (Bk − α0)(1 + α0) + (1 + α0)(2 + α0)Aκ∆

+(1 + α0)(2 + α0)Bρ∆ + (1 + α0)2µ2∆

}
×

(
D∆

k−1∑
s=0

D(s+1)|zs|2
)

+

{
(Bk − α0)(2 + α0)Bρ∆ + (1 + α0)(2 + α0)Bρ∆ + (2 + α0)2ABκρ∆2 + (2 + α0)2B2ρ2∆2

}
×
(
D(m−1)∆

k−1∑
s=0

D(s+1)∆|zs|2
)
.

It is obvious that

Ψ(D) =
{

(Bk − α0)2 + (Bk − α0)(1 + α0) + (Bk − α0)(2 + α0)Aκ∆ + (Bk − α0)(2 + α0)Bρ∆

+µ2∆−QD−∆
}
D∆ +

{
(1 + α0)2 + (Bk − α0)(1 + α0) + (1 + α0)(2 + α0)Aκ∆

+(1 + α0)(2 + α0)Bρ∆ + (1 + α0)2µ2∆

}
D2∆ +

{
(Bk + 1)(2 + α0)Bρ∆

+(2 + α0)2ABκρ∆2 + (2 + α0)2B2ρ2∆2

}
Dm∆.
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For any D > 1, it is evident that Ψ
′
(D) is positive. Additionally,

Ψ(1) =
{

(Bk − α0)2 + (Bk − α0)(1 + α0) + (Bk − α0)(2 + α0)Aκ∆ + (Bk − α0)(2 + α0)Bρ∆

+µ2∆−Q
}

+

{
(1 + α0)2 + (Bk − α0)(1 + α0) + (1 + α0)(2 + α0)Aκ∆

+(1 + α0)(2 + α0)Bρ∆ + (1 + α0)2µ2∆

}
+

{
(Bk + 1)(2 + α0)Bρ∆

+(2 + α0)2ABκρ∆2 + (2 + α0)2B2ρ2∆2

}
.

Therefore, we get

Ψ(1) =

[
(2 + α0)2

(
A2κ2 +ABκρ+B2ρ2

)
− (2 + α0)2D2

]
∆2

+

[
2(Bk + 1)(2 + α0) [−C +Aκ+Bρ] +

(
1 + (1 + α0)2

)
µ2

]
∆.

Hence, we get

∆1 =


−
[
2(Bk + 1)(2 + α0) [−C +Aκ+Bρ] +

(
1 + (1 + α0)2

)
µ2

]
(2 + α0)2

[
(Aκ+Bρ)

2 −D2

]
 .

From our calculations, it follows that Ψ(1) is negative. Thus, for any ∆ < ∆1, there exists a unique value of D0 such
that Ψ(D0) = 0. By selecting D = D0, we get the following result:

Yk = Q
[
|z0|2

]
+

{
(1 + α0)2 + (Bk − α0)(1 + α0) + (1 + α0)(2 + α0)Aκ∆

+(1 + α0)(2 + α0)Bρ∆ + (1 + α0)2µ2∆

}
×

(
D∆

−1∑
s=−1

D(s+1)∆|zs|2
)

+

{
(Bk + 1)(2 + α0)Bρ∆ + (2 + α0)2ABκρ∆2 + (2 + α0)2B2ρ2∆2

}
×
(
D(m−1)∆

−1∑
s=−m+1

D(s+1)∆|zs|2
)

+Mk.

Taking into account the initial value zk <∞ it can be inferred from Lemma 2 in [10] that for D = D0, the following
holds:

lim
k→∞

Yk ≤ ∞ a.s.
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As a result, we obtain.

lim sup
k→∞

QD0|zk|2 ≤ lim sup
k→∞

[
QDk∆

0 |zk|2 +

{
(1 + α0)2 + (Bk − α0)(1 + α0) + (1 + α0)(2 + α0)Aκ∆

+(1 + α0)(2 + α0)Bρ∆ + (1 + α0)2µ2∆

}
×

(
D∆

−1∑
s=−1

D(s+1)∆|zs|2
)

+

{
(Bk + 1)(2 + α0)Bρ∆ + (2 + α0)2ABκρ∆2 + (2 + α0)2B2ρ2∆2

}
×
(
D(m−1)∆

−1∑
s=−m+1

D(s+1)∆|zs|2
)]

≤ lim
k→∞

Yk <∞ a.s. (3.9)

Since τj can be expressed as τj = mj∆, we can conclude that

(Bk − α0)2 + (Bk − α0)(1 + α0) + (Bk − α0)(2 + α0)Aκ∆ + (Bk − α0)(2 + α0)Bρ∆

+µ2∆−QD−∆ +

{
(1 + α0)2 + (Bk − α0)(1 + α0) + (1 + α0)(2 + α0)Aκ∆

+(1 + α0)(2 + α0)Bρ∆ + (1 + α0)2µ2∆

}
D∆

0 +

{
(Bk + 1)(2 + α0)Bρ∆

+(2 + α0)2ABκρ∆2 + (2 + α0)2B2ρ2∆2

}(
D

(m−1)∆
0

)
= 0. (3.10)

We define the constant D as D = eϕ.

Ψ(ϕ) = (Bk − α0)2 + (Bk − α0)(1 + α0) + (Bk − α0)(2 + α0)Aκ∆ + (Bk − α0)(2 + α0)Bρ∆

+µ2∆−Qe−ϕ∆ +

{
(1 + α0)2 + (Bk − α0)(1 + α0) + (1 + α0)(2 + α0)Aκ∆

+(1 + α0)(2 + α0)Bρ∆ + (1 + α0)2µ2∆

}
eϕ∆ +

{
(Bk + 1)(2 + α0)Bρ∆

+(2 + α0)2ABκρ∆2 + (2 + α0)2B2ρ2∆2

}(
e(m−1)ϕ∆

)
.

Assuming ϕ0 = log (D0), for any ∆ < ∆1, from (3.10), we obtain that

Ψ̄(ϕ0) =
{

(Bk − α0)2 + (Bk − α0)(1 + α0) + (Bk − α0)(2 + α0)Aκ∆ + (Bk − α0)(2 + α0)Bρ∆

+µ2∆−Qe−ϕ0∆
}
eϕ0∆ +

{
(1 + α0)2 + (Bk − α0)(1 + α0) + (1 + α0)(2 + α0)Aκ∆

+(1 + α0)(2 + α0)Bρ∆ + (1 + α0)2µ2∆

}
e2ϕ0∆ +

{
(Bk − α0)(2 + α0)Bρ∆ +

(1 + α0)(2 + α0)Bρ∆ + (2 + α0)2ABκρ∆2 + (2 + α0)2B2ρ2∆2

}(
eϕ0τj

)
= 0.

Noting that

lim
∆→0

(1 +Bk) (1 + α0) e2ϕ0∆ + (1 +Bk) (Bk − α0) eϕ0∆ −Q
∆

= 2ϕ0(1 +Bk)(2 + α0 +Bk) + (2 + α0) (Aκ− 2C).

Then, we have

lim
∆→0

Ψ̄ (ϕ0) = ((1 +Bk) (2 + α0)Bρ) eϕ0τj

+ (1 +Bk) (2 + α0) (ϕ0 − 2C + 2Aκ+Bρ) +
(
1 + (1 + α0)2

)
µ2. (3.11)
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Let γ0 be the unique positive root of equation (3.11). It follows from (3.11) that:

lim
∆→0

ϕ0 = γ0. (3.12)

For any positive ε ∈
(

0, γ
∗

2

)
, let ∆2 be a value such that ∆ < ∆2. Then, we have γ∗ > ε > 0, which implies that

ϕ0 > γ0 − 2ε > γ∗ − 2ε.

Therefore, by utilizing equation (3.9) and the definition of ϕ0, it becomes apparent that

lim sup
k→∞

eϕ0∆
∣∣zk∣∣2 <∞.

Therefore, for any ∆ < ∆0 = min {∆1,∆2}, we get

lim sup
k→∞

log
∣∣zk∣∣
k∆

≤ −γ
∗

2
+ ε, almost surely

Hence the proof is complete. �

4. Numerical Examples

Example 4.1. Let us examine the subsequent SDHNN in the presence of a standard Brownian motion W (t):

d

(
y1(t)
y2(t)

)
= −C

(
y1(t)
y2(t)

)
dt+A

(
f(y1(t))
f(y2(t))

)
dt+B

(
g(y1(t− 1))
g(y2(t− 2))

)
dt+

(
σ1y1(t)
σ2y2(t)

)
dW (t). (4.1)

Let f(x) = x, g(x) = sin(x). The case we are interested in is as follows:

C =

(
10 0
0 10

)
, A =

(
10 0
0 5

)
, B =

(
−4 3
3 2

)
and σ =

(
1

−
√

5

)
.

It is obvious that κj = ρj = 1, for j = 1, 2. µ11 = 1 and µ21 =
√

5. So the conditions (H1)-(H3) are satisfied. Let
n∑
j=1

|aij |κj +

n∑
j=1

|bij |ρj =

n∑
j=1

|aji|κi +

n∑
j=1

|bji|ρi =

{
17 if i = 1,
7 if i = 2.

In this example, the two-step Maruyama numerical approximations are a.s. exponential stable for all −1 ≤ α0 < 0
and ∆ ∈ (0, 0.1). Let α0 = −0.25 with γ10 = 1.3751 and γ20 = 1.0694, the Figure 1 is unstable. By Theorem 3.1, the
balanced Maruyama with two-step approximations are a.s. exponential stable for α0 = −0.5 with γ10 = 1.3775 and
γ20 = 1.0751 (see Figure 2) is stable. Thus, we can verify the validity of Theorem 3.1 in this particular example.

5. Conclusion

The focus of this research is on the stability analysis of balanced Maruyama with two-step methods used in stochastic
delay Hopfield neural networks (SDHNN). Our findings show that these numerical schemes provide better stability
compared to earlier studies [10, 11]. We identify the step sizes that lead to almost sure exponential stability of
SDHNN solutions when using the balanced Maruyama with two-step methods. Our future research aims to extend
this investigation to more universal balanced Maruyama with two-step methods and also to balanced Maruyama with
multi-step methods.
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Figure 1. Two-step Maruyama numerical approximation is a.s. exponential unstable ∆ = 0.2.
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Figure 2. balanced Maruyama with two-step approximation is a.s. exponential stable with control
function Bn = 10 and ∆ = 0.2 .



148 S. KOPPERUNDEVI

References

[1] S. Blythe, X. Mao, and X. Liao, Stability of stochastic delay neural networks, J. Franklin Inst., 338 (2001), 481-495.
[2] E. Buckwar and R. Winkler, Multi-step Maruyama methods for stochastic delay differential equations, Stoch.

Anal. Appl., 25 (2007), 933-959.
[3] W. Cao and Z. Zhang, On exponential mean-square stability of two-step Maruyama methods for stochastic delay

differential equations, J. Comput. Appl. Math., 245 (2013), 182-193.
[4] D. J. Higham, X. Mao, and C. Yuan, Almost sure and moment exponential stability in the numerical simulation

of stochastic differential equations, SIAM J. Numer. Anal., 45 (2007), 592-609.
[5] C. Huang, P. Chen, Y. He, L. Huang, and W. Tan, Almost sure exponential stability of delayed Hopfield neural

networks, Appl. Math. Lett., 21 (2008), 701-705.
[6] X. Li and W. Cao, On mean-square stability of two-step Maruyama methods for nonlinear neutral stochastic delay

differential equations, Appl. Math. Comput., 261 (2015), 373-381.
[7] L. Liu and Q. Zhu, Almost sure exponential stability of numerical solutions to stochastic delay Hopfield neural

networks, Appl. Math. Comput., 266 (2015), 698-712.
[8] X. Mao, Stochastic differential equations and applications, Harwood, Chichester 1997.
[9] A. Rathinasamy and P. Mayavel, Strong convergence and almost sure exponential stability of balanced numerical

approximations to stochastic delay Hopfield neural networks. Appl. Math. Comput., 438 (2023), 127573.
[10] A. Rathinasamy and J. Narayanasamy, Mean square stability and almost sure exponential stability of two-step

Maruyama methods of stochastic delay Hopfield neural networks, Appl. Math. Comput., 348 (2019), 126-152.
[11] L. Ronghua, W. K. Pang, and P. K. Leung, Exponential stability of numerical solutions to stochastic delay Hopfield

neural networks, Neurocomputing, 73 (2010), 920-926.
[12] J. Tan, P. Mayavel, A. Rathinasamy, and H. Cao, A new convergence and positivity analysis of balanced Euler

method for stochastic age-dependent population equations, Numer. Methods Partial Differ. Equ., 37 (2) (2021),
1752-1765.

[13] L. Wan and J. Sun, Mean square exponential stability of stochastic delayed Hopfield neural networks, Phys. Lett.
A, 343 (2005), 306-318.

[14] Q. Zhou and L. Wan, Exponential stability of stochastic delayed Hopfield neural networks, Appl. Math. Comput.,
199 (2008), 84-89.


	1. Introduction
	2. Model Equations
	3. Almost sure exponential stability for balanced Maruyama with two-step Methods
	4. Numerical Examples
	5. Conclusion
	References

