- [1] S. Ahmad, A. Ullah, K. Shah, S. Salahshour, A. Ahmadian, and T. Ciano, Fuzzy fractional-order model of the novel coronavirus, Advances in Difference Equation, 2020.
- [2] T. Allahviranloo and B. Ghanbari, On the fuzzy fractional differential equation with interval Atangana-Baleanu fractional derivative approach, Chaos, Solitons and Fractals, 130 (2020), 109397.
- [3] D. Aldila, Mathematical model for HIV spreads control program with ART treatment, Journal of Physics, Confer- ence Series, 974(1) (2018).
- [4] A. Arafa, SZ. Rida, and M. Khalil, Fractional modeling dynamics of HIV and CD4+ t-cells during primary infection, Nonlinear Biomed Phys 6(1) (2012), 7.
- [5] A. Armand, T. Allahviranloo, S. Abbasbandy, and Z. Gouyandeh, The fuzzy generalized Taylor’s expansion with application in fractional differential equations, Iranian Journal of Fuzzy Systems, 16(2) (2019), 57–72.
- [6] M. Asaduzzaman Chowdhury, Q. ZShah, M. Abul Kashem, A. Shahid, and N. Akhtar, Evaluation of the Effect of Environmental Parameters on the Spread of COVID-19: A Fuzzy Logic Approach, Advances in Fuzzy Systems, 2020, 8829227.
- [7] W. Assawinchaichote, Control of HIV/AIDS infection system with drug dosages design via robust H fuzzy controller, Bio-medical materials and engineering, 26(1) (2015), S1945–S1951.
- [8] D. Baleanu, H. Mohammadi, and S. Rezapour, A fractional differential equation model for the COVID-19 trans- mission by using the Caputo–Fabrizio derivative, Advances in Difference Equation, 2020.
- [9] D. Baleanu, H. Mohammadi, and S. Rezapour, A fractional differential equation model for the COVID-19 trans- mission by using the Caputo–Fabrizio derivative, Advances in Difference Equations, 2020, 299.
- [10] B. Bede and L. Stefanini, Solution of fuzzy differential equations with generalized differentiabillity using LU parametric representation, EUSFLAT, 2011, 785–790.
- [11] L. Basnarkov, SEAIR epidemic spreading model of COVID-19, Chaos, Solitons & Fractals 2020, 110394.
- [12] S. Boccaletti, W. Ditto, G. Mindlin, and A. Atangana, Modeling and forecasting of epidemic spreading: The case of COVID-19 and beyond, Chaos, Solitons & Fractals, 135 (2020), 109794.
- [13] S. B. Chen, F. Rajaee, A. Yousefpour, R. Alcaraz, Y. M. Chu, J. F. G´omez-Aguilar, S. Bekiros, A. A. Aly, and H. Jahanshahi, Antiretroviral therapy of HIV infection using a novel optimal type-2 fuzzy control strategy, Alexandria Engineering Journal, 60(1) (2021), 1545–1555.
- [14] S. Djilali and B. Ghanbari, Coronavirus pandemic: A predictive analysis of the peak outbreak epidemic in South Africa, Turkey, and Brazil, Chaos, Solitons & Fractals, 138 (2020), 109971.
- [15] C. Henry and Y. Frederic, On the behavior of solutions in viral dynamical models, BioSystems, 73 (2004), 157–161.
- [16] M. A. Khan and A. Atangana, Modeling the dynamics of novel coronavirus (2019-ncov) with fractional derivative, Alex. Eng. J., 2020.
- [17] H. Kheiri and M. Jafari, Stability analysis of a fractional order model for the HIV/AIDS epidemic in a patchy environment, J. Comput. Appl. Math., 346 (2019), 323–339.
- [18] R. Lu, X. Zhao, J. Li, P. Niu, B. Yang, H. Wu, and W. Tan, Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, Lancet, 6736(20) (2020), 1–10.
- [19] J. E. Mac´ıas-D´ıaz, Nonlinear wave transmission in harmonically driven Hamiltonian sine-Gordon regimes with memory effects, Chaos, Solitons & Fractals, 2020, 110362.
- [20] R. May and R. Anderson, Transmission dynamics of HIV infection, Nature., 326 (1987), 137–42.
- [21] A. Mohammed, A. Al-qaness, A. E. Ahmed, F. Hong, and A.A. Mohamed, Optimization Method for Forecasting Confirmed Cases of COVID-19 in China, Journal of clinical medicine, 2020, 674.
- [22] B. Narasimhamurthy and K. Leelavathy, Mathematical model approach to HIV/AIDS transmission from mother to child, IJSTR., 1(9) 2012), 52–61.
- [23] G. Nazir, K. Shah, A. Debbouche, and R. Ali Khan, Study of HIV mathematical model under nonsingular kernel type derivative of fractional order, Chaos, Solitons and Fractals 139 (2020), 110095.
- [24] A. Perelson, A. Neumann, M. Markowitz, J. Leonard, and D. Ho, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science, 271(1582) (1996).
- [25] C. Pinto, A. Carvalho, D. Baleanu, and H. Srivastava, Efficacy of the post-expo- sure prophylaxis and of the HIV latent reservoir in HIV infection, Mathematics, 7(515) (2019).
- [26] L. Rong, M. Gilchrist, Z. Feng, and A. Perelson, Modeling within host HIV-1 dynamics and the evolution of drug resistance: tradeoffs between viral enzyme function and drug susceptibility, J Theor Biol, 247 (2007), 804–18.
- [27] M. J. Rosana, Fuzzy Modeling in Symptomatic HIV Virus Infected Population, Bulletin of Mathematical Biology, 66 (2004), 1597–1620.
- [28] M. J. Rosana, C. B. La'ecio, and C. B. Rodney, A Fuzzy Delay Differential Equation Model for HIV Dynamics, Proceedings of the Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference, Lisbon, Portugal, July, 2009, 20–24.
- [29] H. Shim, S. J. Han, C. C. Chung, S. W. Nam, and J. H. Seo, Optimal scheduling of drug treatment for HIV infection: continuous dose control and receding horizon control, Int. J. Control Autom. Syst., 1 (2003), 282–288.
- [30] L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differ- ential equations, Nonlinear Analysis, 71(3-4) (2009), 1311–1328.
- [31] K. Yao, H. Chen, W. H. Peng, Z. Wang, J. Yao, and W. peng, A new method on Box dimension of Weyl-Marchaud fractional derivative of Weierstrass function, Chaos, Solitons & Fractals, 2020, 110317.
- [32] H. Zarei, A. Vahidian Kamyad, and A. A. Heydari, Fuzzy Modeling and Control of HIV Infection, Computational and Mathematical Methods in Medicine, 2012, Article ID 893474, 17 pages.
- [33] P. Zhou, X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang, Z. L. Shi, H. R. Si, Y. Zhu, B. Li, and C. L. Huang, A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 579(7798) (2020), 270–273.
|