- [1] K. Bao, An elementary mathematical modeling of drug resistance in cancer, Math. Biosci. Engin., 18(1) (2021), 339-353.
- [2] S. Belkhir, F. Thomas, and B. Roche, Darwinian approaches for cancer treatment: benefits of mathematical modeling, Cancers, 13(17) (2021), 4448.
- [3] V. Bitsouni, V. Tsilidis, Mathematical modeling of tumor-immune system interactions: the effect of rituximab on breast cancer immune response, J. Theor. Bio., 539 (2022), 111001.
- [4] E. Boghaert1, D. C. Radisky, C. M. Nelson, Lattice-based model of ductal carcinoma in situ suggests rules for breast cancer progression to an invasive state, PLOS Comput. Biol., 10 (2014), 1–14.
- [5] S. J. Franks, H. M. Byrne, J. R. King, J. C. E. Underwood, C. E. Lewis, Modeling the early growth of ductal carcinoma in situ of the breast, J. Math. Biol., 47 (2003), 424–452.
- [6] M. Garshasbi and M. Abdolmanafi, Identification of Some Unknown Parameters in an Aggressive-Invasive Cancer Model Using Adjoint Approach, Mediterr. J. Math. 16 (2019), 1-18.
- [7] M. Garshasbi, Determination of unknown functions in a mathematical model of ductal carcinoma in situ, Numer. Meth. Part. Diff. Equ., 35(6) (2019), 2000-2016.
- [8] M. Garshasbi and F. Sanaei, A variable time-step method for a space fractional diffusion moving boundary problem: An application to planar drug release devices, Int. J. Numer. Model., 34 (2021), e2852.
- [9] M. Garshasbi and S. Malek Bagomghaleh, An iterative approach to solve a nonlinear moving boundary problem describing the solvent diffusion within glassy polymers, Math. Meth. Appl. Sci., 43 (2020), 3754–3772.
- [10] M. Garshasbi and J. Sharafi, On the numerical solution of a class of variable coefficients parabolic moving boundary problems, J. Appl. Math. Comput., (2023).
- [11] M. Garshasbi and S. Malek Bagomghaleh, On a moving boundary problem associated with the swelling drug release platforms, I. J. Comput. Math. 99(12) (2022), 2499-2523.
- [12] L. Heng, Some problems arising from mathematical model of ductal carcinoma in situ, Electronic Theses and Dissertations, Paper 2789, (2017).
- [13] K. Liu, Y. Xu, and D. Xu, Numerical algorithms for a free boundary problem model of DCIS and a related inverse problem, Applic. Anal., 99(7) (2018), 1181-1194.
- [14] M. A. Ramadan and M. M. A. Murad, Inverse Nonnegativity of Tridiagonal M-Matrices under Diagonal Element- Wise Perturbation, Adv. Lin. Alg. & Mat. Theo., 5 (2015), 37-45.
- [15] P. Reihani, H. Esmailpour, and F. Soltanian, An ABC algorithm based approach to solve a nonlinear inverse reaction-diffusion problem associate with the ecological invasions, Comput. Meth. Diff. Equ., 11 (2023), 143-160.
- [16] S. Tabassum, N. B. Rosli, and M. S. A. B. Mazalan, Mathematical modeling of cancer growth process: a review, J. Phys.: Conference Series, IOP Publishing, 1366(1) (2019), 012018.
- [17] N. T. Van Ravesteyn, J. J. Van Den Broek, X. Li, and S. J. Lee, Modeling ductal carcinoma in situ (DCIS): an overview of CISNET model approaches, Medical Decision Making, 38 (2018), 126S-139S.
- [18] Y. Xu, An inverse problem for the free boundary model of ductal carcinoma in situ, More Progr. in Anal., World Science Publisher, (2008), 1429-1438.
- [19] Y. Xu and R. Gilbert, Some inverse problems raised from a mathematical model of ductal carcinoma in situ, Math. Comput. Model., 49 (2009), 814–828.
- [20] J. Zhou, Y. Xu, and H. Li, Another way of solving a free boundary problem related to DCIS model, Applic. Anal., 100(15) (2021).
|