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Abstract

In this paper, the existence, uniqueness, compactness, and stability of a coupled random differential equations
involving the Hilfer fractional derivatives with nonlocal boundary conditions are discussed. Arguments are dis-
cussed via some random fixed point theorems in a separable vector Banach spaces and Ulam type stability. Some
examples are presented to ensure the abstract results.
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1. INTRODUCTION

Fractional calculus gives an amazing instrument for the portrayal of memory and innate properties of different
materials and forms due to the presence of terms which insurrection the history and its affect on the present and future
in a model [16, 24]. Fractional differential equations can depict numerous wonders in different areas of science and
engineering. In result, the subject of fractional differential equations is picking up much significance and consideration.
There are an expansive number of papers related to the existence, uniqueness, and multiple solutions of fractional
order boundary value problems, (see [8, 9, 18, 26, 29, 30, 32-35, 38, 42—44, 51] and references therein). On the other
hand, Perov’s et al. [46] extended the classical Banach contraction principle for contrastive maps on space endowed
with a vector-valued metric. Later, they attempted to generalize the Perov’s fixed point theorem in several directions
which has a number of applications in various fields of nonlinear analysis, semilinear differential equations, and system
of ordinary differential equations.

Fractional derivatives in the sense of Riemann-Liouville and Caputo are among the most often used definitions of
fractional integrals and derivatives in the literature. The Hadamard fractional derivative, the Erdeyl-Kober fractional
derivative, and so forth are other, less well-known definitions. When R. Hilfer [24] examined the fractional time history
of physical processes, he provided a generalization of the derivatives of both Riemann-Liouville and Caputo in [24].
It was described by him as a generalized fractional derivative of order & € (0,1) and a type € [0,1] which can
be reduced to the Riemann-Liouville and Caputo fractional derivatives when 3 = 0 and = 1, respectively. The
Hilfer fractional derivative is the term used by several authors. A derivative of this kind in certain ways interpolates
between the Riemann-Liouville and Caputo derivatives. According to [24, 25], and the sources listed therein, the Hilfer
derivative has several specific characteristics and uses. By adding a degree of freedom to the initial condition, this
kind of two-parameter family produces more stationary states. In the models [2, 3, 14, 15, 17, 21, 24, 28, 49, 52] and
references therein, this derivative is employed. On the other hand, the precision of our knowledge of the parameters
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that characterize a dynamic system in engineering or the natural sciences determines how that system behaves. A
deterministic dynamical system develops when knowledge of a dynamic system is exact. Unfortunately, the information
that is currently accessible for the description and assessment of a dynamic system’s parameters is frequently incorrect,
vague, or misleading. So there are certain uncertainties involved in evaluating parameters in a dynamical system. The
prevalent method in mathematical modelling of such systems is the use of random differential equations or stochastic
differential equations when our knowledge of the parameters of a dynamic system is of a statistical nature, i.e., the
information is probabilistic. As logical expansions of deterministic ones, random differential equations appear in many
applications and have attracted the attention of several mathematicians. The reader is referred to references [13, 37].

In this paper, we establish the existence, uniqueness, compactness, and stability of the following coupled system of
fractional order boundary value problems with random effects,

Dé:nlzl(u7 w) = f(uazl(u7 W),ZQ(IL w)vw)a 0<tb < L, 0<m <1,
Df)i’nZZZ(uvw) - g(u7zl(ua w),ZQ(u,w),w), 0</ly<1,0<ny <1,

with nonlocal boundary conditions,

(I35 %21) (@.0) = > cil3i, @),
B (1.2)
(17 5222) (.0) = Y cl(3i,),

where u,3; € J' = (0,9], Dg’;’“i are the left-sided Hilfer fractional derivatives of order ¢; and type n;, ¢; < v; =
£ +n; —4in; < 1,4 = 1,2, which is an interpolator between Riemann-Liouville and Caputo fractional derivatives.
Ié:ti is the left-side Riemann-Liouville integral of order 1 —v;, i = 1,2. Also f,g:J x X x X x 2 — X are given
functions and X is a separable Banach space. ¢;, ¢, (i = 1,2,--- ,m) are real numbers, 3; are prefixed points satisfying

p ’ p
0<31 <32<-<jpr1 =bwith I(ry) # > cigf»l*l, vty > 0 and I'(v) # > cég?fl, ty > 0. The behavior of
i=1 i=1

systems with randomly varying transfer characteristics or with random parametric excitations is described by (1.1)
with stochastic processes as coefficients and conditions (1.2) says that some initial measurements were made at the
times 0 and j3;, and the observer uses this previous information in their model. This type of situation can lead us
to a better description of the phenomenon. Considers the phenomenon of diffusion of a small amount of gas in a
tube and assumes that the diffusion is observed via the surface of the tube. The nonlocal conditions allow additional
measurement which is more precise than the measurement just at u = 0.

2. PRELIMINARIES
In this section, we provide definitions, and auxiliary results which will be useful in the sequel.

Definition 2.1. A square matriz of real numbers is said to be convergent to zero if and only if its spectral radius o(Q)
is strictly less than 1. In other words, this means that all the eigenvalues of Q are in the open unit disc, i.e., |A\| < 1,
for every A € C with det(Q — AI) = 0, where I denotes the unit matriz.

Lemma 2.2. [50] Let Q be a real square matriz. Then the following statements are equivalent.

(a) Q converges to zero,

(b) @3 =0 as j — oo,

() det(I—Q)#0and (I-Q) '=I4+Q+Q*+..+QP +---,
(d) det(I —Q) #0 and (I —Q)~* has nonnegative elements.

Let J :=[0,0], 0 > 0 and (X, |.|) be a Banach space, C(J, X) be the space of X-valued continuous functions on .J
endowed with the uniform norm topology
(&)
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I2lloc = sup |z(u)] (2.1)

Let L'(J, X) the space of X-valued Bochner integrable functions on .J with norm

1l /|f )| du. (29)

We consider the Banach space of continuous functions
Ci_(J,X)={zeC(J,X): lim+ u'""z(u) exists}. (2.3)
u—0
A norm in this space is given by

Izl = sup u' ™" [z (u)]. (2.4)

Let the product weighted space be Cy, v, := C1_, (J, X) X C1_¢, (J, X), with norm,
lalle. . = lull, + il

For Q a subset of the space Cq1_.(J, X), define Q, by
Qe = {2z, z € Q},

where

z: (u) =

{ ul~*z(u), if ue(0,9),

lim,_, o+ ul =" z(u) if u=0.
It is clear that z, € C(J, X).
Lemma 2.3. [9] A set w C C1_(J, X) is relatively compact if and only if w, is relatively compact in C(J, X).

Definition 2.4. [16, 56] The Riemann-Liouville fractional integral of order £ > 0 of a function f € L*(J, X) is the
function Ioé+f of the following form :

_ 1t f(s)
I£+f(u)_r(€)/0 (u_‘s)Hds, t>0, £>0.

Definition 2.5. [16, 36] The Riemann-Liowville derivative of order £ with the lower limit zero for a function f :
[0,00) = X can be written as

¢ _ 1 d\" [* f(s)
LDOJrf(u)_I—‘(?’L—E)(Clt) /(; mds, t>0, n_].<€<n

Definition 2.6. [2/] The Hilfer fractional derivative of type 0 < n <1 and of order 0 < £ < 1 for a function f(u) is

defined by
- (5 0n) - ok

Remark 2.7. Ifn =0 and 0 < ¢ < 1, then Hilfer fractional derivative becomes Riemann-Liouville fractional derivative

of order ¢ and if n =1 and 0 < £ < 1, then Hilfer fractional derivative becomes Caputo fractional derivative of order
L.

Lemma 2.8. Suppose T'(tr) # Z ci3i ' and h € C(J). Then the Cauchy problem with nonlocal conditions

Dgfz(u):h(u), 0<f<1,0<n<]1,
P
(Iys"2) (0) = Y ciz(3:), £<t={+n—In u3 €.

=1
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has a unique solution given by

_ T pc, N o ithiads o+ [ (u— $)Th(s)ds
() = o™ e [ o hds i [0 s (25)
where‘Z:;p.

I'(x) - ; ciz; '

We adopt the following definitions from [27, 48].

Definition 2.9. The system (1.1) is said to be Ulam-Hyers stable, if there exists L = (L1, La) > 0 such that for some
€ = (€1, €2) > 0 and for every solution (z1,22) € C., «, of the inequality

‘Dgﬁr’"l z1(v, @) — f(u,z1(w, ™), z2(w, @), @)

< €y,
(2.6)

D" 2 (1, ) — g(u, 21 (1, ), 22(u, ), ) | < e,

foru e J'. Then, there exists a unique solution (21,23) € Cy v, With
|(Zl,22) — (21, 22)| S Le.

Definition 2.10. The system (1.1) is said to be generalized Ulam-Hyers stable, if there exists B € C(RY,R") with
P(0) = 0, such that for every solution (z1,22) € Cy, v, of the inequality (2.6), there exists a unique solution (21,22) €
Cy v, of (1.1) which satisfies

(21, 22) — (21,22)| < W(e).
Remark 2.11. We say that (z1,22)Ck, v, is a solution of the system of inequalities (2.6), if there exist functons
b, ¥ € C(J',R) which depend upon x,y, respectively, such that
(i) d(u) < €1, W(u) < ez, ueJ and
(ii) Dgﬁ’nlzl(u,w) = f(u,z1(v,w),2z2(u,w),w) + d(u), 0<¥l <1, 0<n; <1,

Dgi’anQ(u,w) =g(u,z1(v,w),z2(u,w),w) + P(u), 0<l <1, 0<ny <1.

2.1. Random Variable and Multivalued Maps. Now, we also introduce some basic definitions on multivalued
maps. For more details, see [9, 31]. Let X be a Banach space. We denote by P(X) = {4 C X : A # 0} the
family of all nonempty subsets of X, P.,(X) = {A € P(X) : A is compact}, Pp(X) = {A € P(X) : A is bounded},
Pa(X) = {C € P(E) : A isclosed}, ,P.,(X) = {4 € P(X) : A is convex}, and the collection of all non-empty
compact and convex subsets of X is denoted by Pep cv(X) = Pep(X) N Pey(X).

Let (£2,%) be a measurable space and F' : w — P(X) be a multivalued mapping, F' is called measurable if
FHQ)={weQ: F(w) C Q} for every Q € P, (X) equivalently, for every U open set of X, the set '~ (Q) = {w €
Q: F(w)NU # 0} is measurable. If X is a metric space, we shall use B(X) to denote the Borel o-algebra on X. The
¥ @ B denotes the smallest o-algebra on @ x X which contains all the sets A x S, where @ € ¥ and S € B(X). Let
F: X — P(Y) be a multivalued map. A single-valued map f : X — Y is said to be a selection of G, and we write
(f C F) whenever f(z) € F(z) for every z € X.

Definition 2.12. [12] A mapping F : Q@ x X — X is said to be a random operator if, for any z € X, f(-,z) is
measurable.

Definition 2.13. [12] A random fized point of f is measurable function z : @ — X such that z(w) = f(w,z(w)) for
all w € Q. Equivalently, a measurable selection for the multivalued map FizFy : Q — P(X) is defined by

FixFo(z) ={z€ X :z= f(w,2)}.

Theorem 2.14. [12] Let (2,X), Y be a separable metric space and F : Q@ — Py (Y') be measurable multivalued. Then
F has a measurable selection.

(&)
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Theorem 2.15. [12] Let X be a separable metric space, Y be a metric space, f : Q@ x X — X be a Carathéodory
function, and U be an open subset of Y. Then the multivalued map F : Q — P(X) defined by F(w) = {w € Q :
f(w,z) € U} is measurable.

Next, we present some random fixed theorem in a separable vector Banach space.

Theorem 2.16. [12] Let (2, F,u) be a probability space, X be a real separable generalized Banach space and F :
QO x X — X be a continuous random operator, and let M(w) € Myxn(R4) be a random variable matriz such that
M (w) converges to 0 a.e. and

d(F(w,z1), F(w,2z2)) < M(w)d(z1,22), for each z1,z9 € X, w € Q.
Then there exists any random variable z : Q — X which is a unique random fized point of F.

Theorem 2.17. [12] Let X be a separable generalized Banach space, and F : Q x X — X a completely continuous
random operator. Then either of the following holds:

(i) The random equation F(w,z) = z has a random solution, i.e., there is a measurable function z : Q@ — X such
that F(w,z(w)) = z(w) for all w € Q, or
(13) The set M = {z : Q@ — X is measurable \(w)F(w,z) = z} is unbounded for some measurable function

A:Q— X with0 < ANw) <1 on Q.

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS
Now we give our main existence results. The following hypotheses will be used in the sequel.

(Hy) There exists random variables K;, I?, : QQ — Ry such that

1fi(w, 21,22, ) = fi(w, 21,22, @) || < Ki(@)l|z1 = Zu]| + Ki(w)l|z2 - 2all,

for z1,2z9,2z1,z0 € X,ue J ,weQ,i=1,2.

Theorem 3.1. Assume that the hypothesis (Hy) holds. If the matrix M (w) converges to 0, then problem (1.1)-(1.2)
has a unique random solution.

Proof. Define the random operators X : C, , X @ — C%, ., by

R(z1,22) = Ny (w, 21, 22); No(w, 21, 22)),

where
T1ut171 P 3i .1
N1(21(u,w)’22(u7W)’W) :WZQ (51 78) ' fl(‘s’Zl(Saw)722(svw)vw)d$
i=1 0
1 u
+ 1_\(61) /0 (11 — 8)21—1f1(8, 21(57 w)’ 22(5, w), W)ds,
and

Toutz—1 p 3i
No(z1 (v, w), z2 (v, w), w) = 12—‘1(162) ch/o (i — 5)2271]"2(5,21(5, w), za(s,w), w)ds
i=1

1 -1
+F(£2)/0 (11—5)5 fa(s,z1(s, @), 2z2(s,w), w)ds.
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Next, we prove X; meets all conditions of Theorem 3.1 on Cy, ,. Let (z1,22), (Z1,22) € Cy, v, then

ut IR (21 (w, @), 2o (u, @), @) — N1 (21, Z2(u, w),w)H
1] Z /51 s)fl—IHf (5,21(8, @), 22(s, @), @) — f1(5,21(5, @), Zo(5, @) Hds
,Fel 1(9,41\o, y 42 9, ) 1 1 z
ul—t1 p 1 " _
+ 5 / (0= ) (5,215, ), 2205, %), ) — (5,215, ), Bals, ), o) | ds
< i Z 9 @ - Bl ) -zl
>~ F 81 1 1 1 1 2 2
1 T u ~
* / (w— )7 (B1(@)[lz1 — Z1 ]| + B1()]|z2 — Z2]|)ds
L'(t) Jo
< B1(@) T Z%Wl Hlz1 — Zalls,
N F(t2) L l1+to—1 ~
+31(W)\‘51\F(£1+t2);czzi 22 — Z2|x
I'(t ~
(@) el ~ Zl
~ F(tg) 0y — ~
B 1—t1+t2 _ -
+ 1(w)“31‘r(€1+t2)0 llz2 — Z2||x,

Then

HNl(Zl(uv w)vz2(u7 w>7w) - N1(21722(u’ w)’ w)”n

(e _
< ()) (| 1D +Dgl> Bi@)llz1 = 22]l,

T+
I'(e P B A -
+F(€1(—2|—)t2 (|Sl| Z CiijH_tZ 1 +D€1t1+t2> Bl(W)HZQ — 22||t2.
i=1

Similarly, for any w € Q and each (z1,22), (z1,22) € Cy, r,, and u € J, we get

HN2(ZI(U~7 w)azQ(uv w)vw) - N2(217E2(uv w)7 w)Htl

L(r,) f .
< claletr—l la+ri—r2 —
< T ey (TS a7t 40070 ) (@) e~ 2,

iy : ]
e (1 S sl 0 ) @) - Zal,

Therefore, we have
d(N(Zla ZQ,W) - N(217227w)) < M(w)d((zla zQ)a (21722))’

(21,22, (r.22)) = ( 21 =il )

22 — Zal|x,

where

and
M) = ( (A + Bosi() (A + Bobi(w) )
(A2 + B2)Bo(w) (A2 + Bo)Ba(w) )

105
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I(v . [(t1)0"
where A, = (€1(+) )\‘31\ Z ciy ol By = (élll -t

~ r
A = L“Sl‘ Z Cljzl+t2 1 B1 &aelftl‘i’tQ’

L(ly +12) [(ly +12)
(e ) e +r—1 Do)
Ay = T TR B ofzmratrn,
2 (£2+r)‘ ‘Z T T(ltu)
T ['(rs) - P(va)
Ay = fetea—1 B 02,
2 — (E T )‘ Q‘Z 131 2 = (fg-i—tg)
Hence, by Theorem 2 16 the operator X has a unique fixed point which is a random solution of (1.1)-(1.2). O

4. EXISTENCE AND COMPACTNESS OF SOLUTION SETS

For the existence and compactness of solutions for the system (1.1)- (1.2), we need to make the following assumptions

(Hs) The functions f;, ¢ = 1,2 are random Carathéodory on J x X x X x €,
(H3) There exists measurable functions a;,b; : @ — R4, i = 1,2 such that

I fi(u, 21,22, @)|| < a;(w)||z1|| + bi(@)||z2||, for a.e., u € J, and each z1,2z3 € X.

Theorem 4.1. Assume that the hypotheses (Hz)-(Hs) hold. Then, the coupled system (1.1) and (1.2) has at least
one random solution.

Proof. We prove it in the following four steps.

Step 1. N(-,-,w) is continuous.

Let (z1p,Z2n)n be a sequence such that (z1,,2z2,) — (21,22) € Cyy v, a8 n — co. For any w € 2 and each u € J, we
have

ul ™ Ry (u,z1, (0, @), 2o, (0, @), @) — N1 (u, 21 (v, w), 22(u, w),w)”
|Sl b )= 1
< F @) Z i—S) ’fl 8,210 (8, @), 2on (s, @), @) — f1(s,21(s, ™), 22(s, @) Hds
al 151 u
7/ (u— s)el_lel(&zln(&w),zzn(s,w),w) f1(s,z1(s,@),22(s, ™) Hds
(1) Jo
Then
G-l ['(t1) A
HNl(t; zln(u7 w)7z2n(u7 W), w) - Nl(ll,Z](lL ’W),ZQ('LL w)7w)||t1 S 1| chﬁ ma

<[ A6zt @) 200 @) @) = a2l @), 22 ) )

Since f; is Carathéodory, we have

T

N1 (-, 210 (-, @), Zon (-, @), @) — N1 (-, 21(+, @), 22(+, @), @)]|e; — 0 as n — co.
On the other hand, for any w € 2 and each u € J we obtain

[IN2(u, zln(u w),Zon (0, @), @) — Na(u, 21 (0, @), z2(1, @), @)||c,

F(tg)
1 lo+to— 1 14
‘D 2
( f —|—t |H|Z%z (€2+t2)
||f2('7 Zln('u )7 ZZn(H w)? 'CU) - f2('7 Zl(.7 'ZU)7 22(.’ w)’ w)HtZ'
Furthermore, from the fact that fs is Carathéodory, we have

IN2(-y 210 (-, @), Zon (-, @), @) — Na (-, 21 (-, @), 22 (-, @), @)]|e, = 0 a8 n — 0.

Hence, N(-,-,w) is continuous.

Step2. N(-,-, @) maps bounded sets into bounded sets in Cy, «,.
(=)=

E)NE
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For R > 0, denote Bgr := {(21,22) € Ct, v, © ||Z1lley < R, ||Z2]le, < R}. For any w € Q and each (z1,2z2) € Br and
u € J, we have

p i
w7 IR (u, 21 (u, @), 2o (0, @), @)|| < F|(T£11|) ;Ci/o (3: — 8) Y| f1(s, 21 (s, @), 22(s, @), @)||ds
11—t u
+;(£1)/0 (w—3)"71| f1(s, 21 (s, @), 22(s5, @), @)||ds
3: p i
< TS [Nt @lel + s
i=1 0
11—ty u
i [t @)l + ) yl)as
P di
: %'%' Z/ (35 = )" 's' " (@ (@) + bu(w))ds

LTS uu—sll*lslf”a w w))ds
e | = (1() + by ())d

1Tt — F(tl) 1
(g St ¢ ) (o) )

= ll.

Thus, [N (u,z1(w, @), 2z2(w, @), @)[lc,, < h. Similarly, we have N (u, z1 (v, @), z2(w, @), @)|lc,, < kb, where

! Lo+to— 1 r 2
b= < |u |Zczﬁf * (E;tj)m)bé > (GZ(W) + b2(w)>.

Hence ||R(u, 21 (u, @), z2(u, w),‘w)HctLr2 < (h,k) =1

Step 3. X(-,-,w) maps bounded sets into equicontinuous sets in Ck, «,.

Let uj,us € (0,9], w1 < ug, (z1,22) € Br and w € 2, we have:
Hu%_thl(ug,zl(u27w),22(u2,w),w) —u1 Ny (uy, 21 (w1, @), 22(u1, @), @)

T

(4,

T1
/ (111 7s)élilfl(s,Zl(S,w),ZQ(S,w),W)dS
0

1t1

2(51 /O2(u2—8)61—1f1(s,21(s,w),ZQ(S,W),w)dS

T1
/ |'l.11 o (u2 - S)Z171 - uiitl (111 - 5)2171| Srlilslitl Hf(S,Zl(S,W), ZQ(S7W),W)||dS
0

17t1 ug
u _ 11—
+2 / ’(ug—s)él 1‘8“ Lgl | f1(s,21(8, @), z2(s, @), @)||ds
T

R (™
< 7)/ ‘uéi'ﬁ <u2 - 5)51 1 u} T (111 _ 5>€1—1| Srl_lds
0

n R u2 |u1—t1(u -1 r1—1d
5 29— 38) ‘s s

:3:21 + ul 131 (u2 _ ‘Il)€1+t1+1}
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Similarly, we get
“u}_tQNl(Ill,Zl(U.17W),ZQ(u1,W),W) _u2 tzNQ(uzuzl(u27 ) ZQ(uluw)uw)H
F(t2)R [2 11—t
— 2 ul —uf pulT2(uy — e2+"2+1}
— F(£2 +t2) 2 1 ( 2 1)

Thus,
[N(u1,2z1(u1, @), z2(w1, @), @) — N(uz,21(v2, @), 22(v2, @), @)y, ., =0 asuw — ua.
As a consequence of Steps 1-3, with the Arzela-Ascoli theorem, we conclude that X(-, -, ) maps Bp into a precompact
set in Cy, v,
Step 4. The set E(w) consisting of (z1(-, @), z2(+,@)) such that
(z1( @), 22(-, @) = A(@)R(-, 21 (-, @), 22(+, @), @),
for some measurable function A : @w — (0,1) is bounded in Cy, «,. Let (z1(-,w),22(-,@)) € C4, +, such that
(z1(- @), 22(, @)) = M@)R(, 21 (-, @), 22 (-, @), @).
Then,
z1( @) = M@V (-, z1(, @), 22 (-, @), @),
and
z5(-, @) = Mw)Ra(, 21 (-, @), 22 (-, @), @).
Thus, for any w € w and each u € J, we have:

‘Z 3i
z1(0, @)lc,, < fr| 1 Z / $) " ax(@)||z1 || + b1(w)||z2])ds

al Ty
INE2Y)

) —5)" " a1 (@)]|z1 1(@)]|z2]))ds
T /o(“ )1 ar(@)llza | + bi () 22}

Furthermore, we get:

‘I 3i
Jzatu e, < pos Z 6= @+ () s

ol tr—1
+F(£2)/0 (u—15)""" (a2(w@)||z1]| + b2(w)||22[))ds
Hence, we obtain:
1
121 (@), +llz2(w, @)lle., < 1— o C,
where
['(v1) otrr—vo L (1) [(v1) Gitra—ry L (v2)
— 31 2+t —t2 b T b 1+t2—1 .
Cl max{al(TE)D F(€1+t1) +a‘2(w)b F(£2+t1)’ 1(w)b F(»€1+t1) + Q(W)D F(zl“‘tg)
Hence
z1(-, @), z2(, @) [y e < C- (4.1)

This shows that the set E(w) is bounded. As a consequence of Steps 1-4 together with Theorem 2.17, we can conclude
that N has at least one fixed point in Bp, which is the solution for the system (1.1) and (1.2). Now, we show that
the set

S(x0,%0) = {(z1,22) € Cy, v, : (21,22) is the solution of (1.1) and (1.2)}
such that zo = >0,

Y ci(3i,@) and yo = Y b ¢i(3s, @) for w € Q and 3; € J is compact. It is clear that S(zo,yo) C
N(S(xo,y0)). From (4.1) we deduced that S(zg,yo) is bounded sets in Cy, r,. Since N is compact, then S(zg,yo) is

(=)=
E)NE
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compact if and only if S(xg,yo) is closed.
Let {z1n,Z2n }n>1 C S(z0,y0) be a sequence converge to (z1,z2). Thus,

3i

Zln(u,W) = F([l) utr—1 Z Ci o ( di — 5)21—1f1(8,Zln(S,w),ZQn(syw),w)ds
+]_"(£1) /Ou(u—3)51—1.]"1(8,21”(5,w)7z2n(37w)7w)d8’ we J

and
Z2n(U,w) El utz—1 Z / Zz 1f2(5 Zln(S W) ZQn(S w) w)ds
-‘rF(;Q)/O (u— 3)62 1f2(3,Zln(svw)azzn(s,W)7w)ds we J.

Similarly to step 2, we can prove that

3i

(0.) = e S [ 6= 9 i 9). 2ol ), s
+I‘(£1) /Ou(u—s)gl_lfl(s,zl(s,w),zz(s,w),w)ds ueJ,

and
a(0.%) = oo £ [ =9 s (.9),2a (s, ), )
+F(;2)/0 (u— s)éz 1f2(s,21(s,w),zz(s,w)mﬂ)ds ue J.

This implies that S(zo, yo) is compact.

5. ULAM STABILITY ANALYSIS

In this section, we study the Ulam stability of the problem (1.1) and (1.2).

109

Lemma 5.1. Suppose (z1,22) € Cy, v, be the solution of the inequality , then we have the system of inequalities given

as

u!l 7"z (u,

fi uufSZﬁl s 21 (5. ) 2zo(s. @), o)ds
F(él>/o( )1 (s 21(s, ), 225, ), )d

ulf‘CQ

1 u .
@/0 (u—sy f2(5’21(37w)722(8,w),w)ds

Proof. We have

{ 5{#”121( @) = fi(w,z1(w, @), 22 (0, @), @) + d(u), ue J,
27”2 ( 7w) = f2(uvzl(u7w)az2(uaw)aw) +l-')(u)7 ue J/7

ute 1ZCZ /h $)a7 1 (s, 21 (s, @), 22(s, @), w)ds

S L1515 uc J7

RERNE o /ﬁ a1
3 - r2 i i 2 ) 5 B ) 5 d
zo(u, @) F(fg)u g c ; (i — 8)2 7" fa(s,z1(s, @), 22(s, w), w)ds

< Loeg, u e J.

(5.1)
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with nonlocal boundary conditions (1.2) has a solution

z1(w, @) = utto IZCZ /ZL $)aTLf (s, 21 (s, @), z2(s, @), w)ds

1 u
+ m/o (u—s)1"1f1(s,21(s, @), 22(s, @), @)ds

Tl p 3i
+ ——un! ci/ 3 — s) L (s)ds
r T e a9t

L uu_ -1 u
+F(€1)/0( s) d(s)ds, u € J,

Y ta—1 S //‘% ) fo—1
Z2(u7w)_r(€2)u ;Ci o (31 8) f2(8721(saw)’ZQ(svw)vw)dS

1 ’ —5)27 L fo(s,21(s, @), 22(s, w), w)ds
+]_—‘(€2)/0 (u ) f2(’ 1(7 )7 2(’ )7 )d
w2~ 12 / i — 8) P (s)ds
1 ’ —5)271(s)ds, u
+F(€2)/0 (u ) P(s)ds, u € J

Then from first equation, we have

3i
ut Mz (v, ) — 61 utte 1201/ 8)7 1 (5,21 (s, @), 22(s, @), w)ds
i [ w9 s @) (s, ) s
- u— z1(8,@),z2(s,w), @
T(6h) 1 1 2
3i
:ul’“ 1 ut ! cl/ (30 —s)0 7! ds + —— / —s)a7 1 p(s)ds
Z Blads + g [ =9 a()
1—t+24 -
>~ F (1 +1 gl Zczg +0 1] €1 = L1€1.
In similar manner we can obtain other mequahty. |
Theorem 5.2. Assume that (Hy) holds and let p=! = 0omy + 01(M2 — 1) — 12 + 1 # 0, where
L1+t — 1 o
AL
s Ao+ —1 lo+ti—12 8
oy = (€2+t <3 \Zcu’n +9 ) 2(@),
(5.2)

T 1€1+r2 1 051*t1+f2 B
o= i (i e @

T /L1t —1 052 B
= g I (=)
Then the boundary value pmblem (1.1)-(1.2) is Ulam-Hyers stable and consequently generalized Ulam-Hyers stable.

(=)=
E)NE
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Proof. Let (z1,22) € Cy, ¢, be the solution of the inequalities given in and (21,22) € C., «, be the unique solution to
the following system

{ Dé:nlﬁl(u w) fl(u>21(u7w)722(u=w)7w)7 uc JI7

5.3
D0¢n222(u w) f2(u721(u7 w)722(u7w)7w)7 uc JI7 ( )

with nonlocal boundary conditions,

(Ié+ "z 1) (WVO) = zp: Ci(éivw)v 3i € J,v ( )
2 5.4
(Ip:"22) (w,0) = Z (31, ), 3 € J".

1=1

<0

Then, in view of Lemma 2.8, the solution of (5.3) and (5.4) is given by

z1(u,w) = ut o 1201 /51 $)a7Lf1(s,21(s, @), 22(s, @), @w)ds
+ % /Ou(u —5) 7 f1(s,21 (s, @), 22(s, @), w)ds
2af0,) =g > / " (3t = 8 fa(s, 5 (5, @), 22, ), w)ds

1 uu_szrl s 5 (5. ) 30 (5. ). o) ds
1"(22)/0( )27 fa(s,21(s, @), 22(s, @), @)d

From Lemma 5.1 and (3.1), we get

P 3i
ul_tl |Zl(u7 W) - 21(11, w)’ = ul_tl Zl<ua ZU) - ‘Iel )utl_l ZCZ/ (31 - S)Kl_lfl(s,Zl(S,w),ZQ(S,W),W)dS
! i=1 70
- /u(u—s)érlf (s,21(s,@),2z2(s,w), w)ds
1-‘(61) 0 1o 21\, y 4209, )
1—t Tl ut 1 Zn f 1
+u " 1= ch i — ) f1(s,21(s, @), z2(s, @), @)

— fi(s, 21(8, W)7 22(8, W), w)] ds

L uu—Sel_l $,21(8,@),z2(s8, @), ™) — f1(s,21(s, @), 22(s, @), w)|ds
+]_"(€1)/0( ) [f1(7 1(7 )’ 2(7 )7 ) fl(a 1(7 )7 2(’ )’ )]d

['(vy) S el =
<L N :I i 1 1 1 ﬁ —
< Liel + T + 1) <| 1 ;:1 Cid; +0 1(@)[|z1 = Z1]f,

F(t2) u f1+rto—1 01 —t1+to ~ _
—_— i 41 2 B o
T+ 'Sl';”’@ e 1()]22 = B s,

So,

. (e a _ )
|21 (u, @) — 21 (w, @), < Liex + F(Kl(‘i)tl) <|31| D ettt +°€1> Bi(@)lz1 — 21|y,
=1

(€1+t2 ('THZW“*” 't 0*1“1“2>f51<w>||z2—22||t2.
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Similary, we have

||22(u, w)—22(u, w)”tl

< Loes + o ( (l%lZc;af”“l #2“”2) By() 121 — 21lle,

(6 +t <lecézfl+t2 L+ 052) Ba(w)l|z2 — 22l
1

From (5.2), the above two inequalities can be written as

(1= o1)llz1 = 21le; = mllz2 = 22, < Lyey, (55)
(1 —=m2)llz2 — 22|le, — 02[|z1 — 21]|¢, < Laea, .
Further, system (5.5) can be put into matrix form as
1-0y - Iz1 — 21, Lie
<
—03 1—m2/) \lz2 — 22, Loes
On solving above inequality, we obtain
L= 1
21 — 21|, © © Liey
<
22 — 22|x, 02 l—o Laes
Y o
Therefore,
5 . ([1-m2+o0 1—oq +
lz1 — 21lle, + (|22 — 22[e, < TIZQ] Lie; + [;m} Laes.
Let € = max{ey, €2}. Then, we get ]
[(z1,22) — (21-22)|lc., ., < Le,
where )
L= g[(l + 02 —M2)L1 + (1 — 01 +11)Ls].
Further, if we can write
1(z1,22) = (21-22)llc, ., < Lb(€), where p(0) =
then the solutions of (1.1)-(1.2) are generalized Ulam-Hyers stable. O

6. EXAMPLES
Let Q = (—00,0) be equipped with the usual o-algebra consisting of Lebesgue measurable subsets of (—o0,0).

Example 6.1. Consider the following system of random Hilfer fractional differential equations with nonlocal conditions

2

1 40e~t
Db,y = 0]

9t + 1804+ ||z1(u,w)|| w2+ 54

cos za(u, w),

(6.1)
arctan zs(u, @
D3+ 22(11 W) ﬁsmzl(u W) Wf)(ouz), UEJ/ = (071],
with nonlocal conditions
(1:21) (0.) = 1213, @) + 2213, @),
(6.2)

1
(1.22) 0.) = hza(} =) + (4. ),

(=)=
E)NE
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where {1 = {9 = % Ny =ng = %, =t =2 and 1 =cg=c) =cyh=1,b=1. Moreover,
1 1

zl(l,w) = ZQ(*,W) = —— and |T4| = |Tg| = ———— =~ 0,8959.

: SRS (3 -23)8

Note that

~ ~ 1 ~ 1 -
”fl(uvzl(u,w)?Z?(uaw)7w) - fl(uazlaw)aZQ(ua w),w)” < TS”Zl - 21” + T8||22 - ZQHv

and

~ ~ 1 ~
||f2(u721(u7w)722(u7w)7w) - f2(uﬂzl7w)ﬂ22(u7 w)7w)” < T6||ZI Zl” + ||ZQ ZQHﬂ

1 A P 1
where B (w) = B2(w) = 1 and 81 (w) = B1(w) = 6 Also the matrix given by

(o) 0,4776 0,4776
w) = ,
0,0475 0,0475

converges to 0. Theorem 3.1 implies that the coupled random system (1.1) and (1.2) has a unique random solution
defined on [0, 1] x €.

Example 6.2. Consider the following coupled random system of fractional differential equation

1)3Jr z1 (v, w) = f(u, 21 (0, @), z2(u, @), @),

ue J :=(0,1], (6.3)
DJ+ 22(11 w) = g(ua zl(u7 w)a 22(117 w)a ’(D),
with nonlocal conditions
1 2
(I§+Z1) 0,@) = > cizi(3, @),
= (6.4)

e
S
N
%)

(I$+22) (0,w) =

(3:@),

s
Il
_

2 1 5 / / 3 3
where {1 =y = £,n =ny = 5,v1 =12 = g and ¢ = ¢ = 4,¢] = ¢ = 5,b = 4. Morever zi(5,w) = z2(5, @) =
1
——— where
(1+w?)’

Vuz?(u, @) sin(u)  zZ(u, @) cos(z1 (v, @)z2(u, w))

fu,z1(v,w),2z2(u,w),w) =

32e*(1 + ||z1]) 16e(1 + ||z2||7) ’
B \/ﬁz% (0, @) + 21 (0, @)z2(w, w) sin(v)  za(u, w)e‘zi(“’w)
9,21 (0, @), 220, 2). %) = e T T @) 4 [zl Tzl) 10001+ 22w @)
Not that 1
||f(11,21(11,w),22(11, w) )H S 32”21” + 6”22Ha
and
oo, 21 (0, 2). 22000, 9). ) = 1l + 1o 2]l
We get a1(29) = o, by (@) = = 5(®) = ) bo(@) = —
8OV A\ W) = 39 W) = 740 @2\ = 1587209 = 7507

£6 T(3) 45 T(F) 45 TE 2P TE)
Cr=max\ oo =o "5t orrnz., 5 g T 0Tz,
32 T(2+2) 64D0(2+2) 8 T((+2) 100I(2+2)
=max{0.449,0.6928} = 0.6928 < 1.

As a consequence of Theorem 4.1, we conclude that N has a fixed point, which is the random solution of problem
(6.3) ans (6.4) defined on [0, 4] x Q.
an
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7. CONCLUSION

The existence, uniqueness, compactness, and stability of coupled random fraction differential equations using the
Hilfer fractional derivatives with nonlocal boundary conditions are explored in this study. In order to discuss the
arguments, a few random fixed point theorems in a separable vector are used. The abstract results are supported by
examples. In the future, we plan to study coupled random fractional differential equations involving Caputo-Fabrizio
derivatives, iterative systems of random fractional order boundary value problems, and random fractional dynamic
equations on time scales.
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