تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,134 |
تعداد دریافت فایل اصل مقاله | 15,216,802 |
بررسی اثر استفاده از بلوکهای سفالی توخالی پر شده با کاه گندم فشرده به عنوان عایق گرمایی | ||
مهندسی مکانیک دانشگاه تبریز | ||
دوره 53، شماره 1 - شماره پیاپی 102، اردیبهشت 1402، صفحه 157-166 اصل مقاله (647.15 K) | ||
نوع مقاله: مقاله مروری | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2023.50927.3081 | ||
نویسندگان | ||
رویا احمدی1؛ بابک سوری* 2؛ مسعود ابراهیمی3 | ||
1دانشجوی کارشناسی ارشد، گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه کردستان، سنندج، ایران | ||
2دانشیار، گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه کردستان، سنندج، ایران | ||
3دانشیار، گروه مکانیک، دانشکده مهندسی، دانشگاه کردستان، سنندج، ایران | ||
چکیده | ||
کاه گندم از جمله ضایعات بخش کشاورزی است که در اراضی زراعی سوزانده میشود و منجر به ورود گازهای گلخانهای به جو میگردد. هدف این مطالعه ارزیابی اتلاف انرژی گرمایی از دیواره بیرونی ساختمان هنگامی که با استفاده از بلوکهای سفالی توخالی پر شده با کاه گندم فشرده ساخته شده است میباشد. از این رو بلوکهای سفالی توخالی در قیاس با حالتی که به وسیله کاه گندم فشرده (دارای تراکم g cm-3 156/0) پر شدهاند برای ساخت دیوارههای یک مدل محفظه آزمایشی در فضای باز استفاده شد و اتلاف انرژی گرمایی از دیوارههای آن مورد ارزیابی قرار گرفت. مقایسه خصوصیات حرارتی دیوارههای ساخته شده از بلوکهای سفالی عایق نشده/شده با استفاده از کاه گندم فشرده شامل: رسانایی گرمایی، آهنگ انتقال گرما و ضریب انتقال گرمای کلی کاهش پارامترهای مذکور به ترتیب از 2/0 به W m-1 °C-1 04/0 ، 36/18 به W m-2 98/6 و 7/1 به W m-2 °C-1 41/0 در دیوارههای عایق شده را تایید نمود. نتایج آشکار ساخت که کاربرد کاه فشرده میتواند بین 72 تا 81 درصد اتلاف انرژی گرمایی از دیوارههای ساختمان را کاهش دهد. | ||
کلیدواژهها | ||
بلوک؛ عایق؛ کاه؛ ساختمان؛ خصوصیاتحرارتی؛ اتلاف انرژی | ||
مراجع | ||
[1] Kanagaraj G., Mahalingam A. Designing energy efficient commercial buildings—A systems framework. Energy and Buildings, Vol. 43, No. 9, pp. 2329-2343, 2011. [2] Carlini M., Allegrini E., Zilli D., Castellucci S. Simulating heat transfers through the building envelope: A useful tool in the economical assessment. Energy Procedia, Vol. 45, pp. 395-404, 2014. [3] Barreca F., Fichera C. Use of olive stone as an additive in cement lime mortar to improve thermal insulation. Energy and Buildings, Vol. 62, pp. 507-513, 2013. [4] Nasrollahi F. Urban and architectural criteria for reducing building energy consumption. National Energy Committee of Iran: Tehran, Iran, 2012. [5] Atanasiu B., Arcipowkska A. Synergies between Energy Efficiency and Renewable Energy in EU Built Environment, Further Need of Data Collection for Implementing EU Buildings Policies. Building Performances Institute Europe (BPIE), London, 2014. [6] Lapillonne B., Sebi C., Pollier K., Mairet N. Energy Efficiency Trends in Buildings in the EU. 2012, Lessons from the ODYSSEE MURE project. Intelligent Energy Europe Programme of the European Union, 2014. [7] C.o.t.E.C.J.R. Centre, Impacts of Europe's Changing Climate 2008 Indicator-based Assessment, European Communities, 2008 . [8] Chikhi M., Agoudjil B., Boudenne A. Gherabli, Experimental investigation of new biocomposite with low cost for thermal insulation. Energy and Buildings, Vol. 66, pp. 267-273, 2013. [9] Panyakaew S., Fotios S. New thermal insulation boards made from coconut husk and bagasse. Energy and buildings, Vol. 43, No. 7, pp. 1732-1739, 2011 .[10] Binici H., Eken M., Kara M., Dolaz M. An environment- friendly thermal insulation material from sunflower stalk, textile waste and stubble fibers, in: 2013 International Conference on Renewable Energy Research and Applications (ICRERA), IEEE, 2013, pp. 833-846. [11] Sarja A. S.R. Liitto, Integrated Life-cycle Design of Materials and Structures: ILCDES 2000, Helsinki, Finland, 22-24 May 2000: Proceedings of the RILEM/CIB/ISO International Symposium, RILEM publications, 2000. [12] Doost-Hoseini K., Taghiyari A. Elyasi, Correlation between sound absorption coefficients with physical and mechanical properties of insulation boards made from sugar cane bagasse. Composites Part B: Engineering, Vol. 58, pp. 10-15, 2014 .[13] González A.D., Energy and carbon embodied in straw and clay wall blocks produced locally in the Andean Patagonia. Energy and Buildings, Vol. 70, pp. 15-22, 2014. [14] Zhou X.-y., Zheng F. H.-g. Li, C.-l. Lu, An environment- friendly thermal insulation material from cotton stalk fibers. Energy and Buildings, Vol. 42, No. 7, pp. 1070-1074, 2010. [15] Wei K., Lv C., Chen M., Zhou X., Dai Z., Shen D. Development and performance evaluation of a new thermal insulation material from rice straw using high frequency hot- pressing. Energy and Buildings, Vol. 87, pp. 116-122, 2015. [16] Kellati N.-e., El Bouardi A., Ajzoul T., X Ezbakhe D. Etude de propriétés thermophysiques et acoustiques du liège compact et granulaire, Revue des Energies Renouvelables CER’07. Oujda, 241, 244, 2007. [17] Paiva A., Varum H., Caldeira F., Sá, D. A. Nascimento, N. Teixeira, Textile subwaste as a thermal insulation building material, in: International Conference on Petroleum and Sustainable Development IPCBEE, 2011. [18] Pinto J., Paiva A., Varum H., Costa A., Cruz, D., Pereira S., Fernandes L., Tavares P., Agarwal J. Corn's cob as a potential ecological thermal insulation material. Energy and Buildings, Vol. 43, No. 8, pp. 1985-1990, 2011. [19] Madurwar M.V., Ralegaonkar R.V., S.A. Mandavgane, Application of agro-waste for sustainable construction materials: A review, construction and Building materials, Vol. 38, pp. 872- 878, 2013. [20] Korjenic A., Petránek V., Zach J., Hroudová J. Development and performance evaluation of natural thermal-insulation materials composed of renewable resources. Energy and Buildings, Vol. 43, No. 9, pp. 2518-2523, 2011. [21] Korjenic A., Zach J., Hroudová J. The use of insulating materials based on natural fibers in combination with plant facades in building constructions. Energy and Buildings, Vol. 116, pp. 45-58, 2016. [22] Briga-Sa A., Nascimento D., Teixeira N., Pinto J., Caldeira F., Varum H., Paiva A. Textile waste as an alternative thermal insulation building material solution. Construction and Building Materials, Vol. 38, pp. 155-160, 2013. [23] Florea I., Manea D.L. Analysis of thermal insulation building materials based on natural fibers. Procedia Manufacturing, Vol. 32, pp. 230-235, 2019. [24] Cantor D.M., Manea D.L. Innovative building materials using agricultural waste. Procedia Technology, Vol. 19, pp. 456- 462, 2015. [25] Ashour T., Georg H., Wu W. Performance of straw bale wall: A case of study. Energy and Buildings, Vol. 43, No. 8, pp. 1960-1967, 2011. [26] Kıng B. Design of Straw Bale Buildings, in, Green Building Press, 2006. [27] Muazu A.G., Alibaba H.Z. The Use of Traditional Building Materials in Modern Methods of Construction (A case Study of Northern Nigeria). Engineering Science Technology and Research, Vol. 2, No. 6, pp. 30-40, 2017. [28] Mohajerani A., Ukwatta A., Jeffrey-Bailey T., Swaney M., Ahmed M., Rodwell G., Bartolo S., Eshtiaghi N., Setunge S. A proposal for recycling the world’s unused stockpiles of treated wastewater sludge (biosolids) in fired-clay bricks, Buildings, Vol. 9, No. 1, p. 14, 2019 . [29] Rojas C., Cea M., Iriarte A., Valdés G., Navia R., Cárdenas- R J.P. Thermal insulation materials based on agricultural residual wheat straw and corn husk biomass, for application in sustainable buildings. Sustainable Materials and Technologies, Vol. 20, 2019, e00102. [30] Mohajerani A., Kadir A.A., Larobina L. A practical proposal for solving the world’s cigarette butt problem: Recycling in fired clay bricks. Waste management, Vol. 52, pp. 228-244, 2016. [31] Almusaed A., Almssad A. Building materials in eco-energy houses from Iraq and Iran, Case Studies in Construction Materials, Vol. 2, pp. 2-54, 2015. [32] Bouchair A. Steady state theoretical model of fired clay hollow bricks for enhanced external wall thermal insulation. Building and Environment, Vol. 43, No. 10, pp. 1603-1618, 2008. [33] Corscadden K., Biggs J., Stiles D. Sheep's wool insulation: A sustainable alternative use for a renewable resource?. Resources, Conservation and Recycling, Vol. 86, pp. 9-15, 2014. [34] Zach J., Korjenic A., Petránek V., Hroudová J., Bednar T. Performance evaluation and research of alternative thermal insulations based on sheep wool. Energy and Buildings, Vol. 49,246-253, 2012. [35] Cascone S., Rapisarda R., Cascone D. Physical properties of straw bales as a construction material. Sustainability, Vol. 11, pp. 3388, 2019. [36] Miron I. O., Manea D. L., Cantor D. M., Aciu C. Organic thermal insulation based on wheat straw. Procedia Engineering, Vol. 181, pp. 674-681, 2017. [37] Ahmadi R., Souri B., Ebrahimi M. Study of the rate of thermal energy loss from clay blocks filled with natural porous insulation of compacted straw. University of Kurdistan, Sanandaj, Iran (in Persian), 2015. [38] Souri B., Ahmadi R, Ebrahimi M. Insulated clay blocks, Patent number 102923 (in Persian), 2021. [39] Ahmadi R., Souri B., Ebrahimi M. Evaluation of wheat straw to insulate fired clay hollow bricks as a construction material. Cleaner Production, Vol. 254, 2020, 120043. [40] Binici H., Gemci R., Kucukonder A., Solak H.H. Investigating sound insulation, thermal conductivity and radioactivity of chipboards produced with cotton waste, fly ash and barite. Construction and Building Materials. Vol. 30, pp. 826-832, 2012. [41] Zemansky M.W., Dittman R.H. Heat and thermodynamics, American Association of Physics Teachers, 1998. | ||
آمار تعداد مشاهده مقاله: 159 تعداد دریافت فایل اصل مقاله: 163 |