- [1] M. Abbaszadeh, H. Pourbashash, and M. Khaksar-e Oshagh, The local meshless collocation method for solving 2D fractional Klein-Kramers dynamics equation on irregular domains, Int. J. Numer. Methods Heat Fluid Flow, 32 (2021), 41–61.
- [2] A. Cartea and D. del Castillo-Negrete, Fractional diffusion models of option prices in markets with jumps, Phys. A: Stat. Mech. Appl., 374(2007), 749–763.
- [3] Z. Cen, J. Huang, A. Xu, and A. Le, Numerical approximation of a time-fractional Black–Scholes equation, Comput. Math. with Appl., 75 (2018), 2874–2887.
- [4] W. Chen and S. Wang, A power penalty method for a 2D fractional partial differential linear complementarity problem governing two-asset American option pricing, Appl. Math. Comput., 305 (2017), 174–187.
- [5] W. Chen, X. Xu, and S. Zhu, Analytically Pricing double barrier options based on a time-fractional Black–Scholes equation, Comput. Math. with Appl., 69 (2015), 1407–1419.
- [6] V. Comincioli, T. Scapolla, G. Naldi, and P. Venini, A wavelet-like Galerkin method for numerical solution of variational inequalities arising in elastoplasticity, Commun. numer. methods eng., 16 (2000), 133–144.
- [7] F. Facchinei and J. S. Pang, Finite-dimensional variational inequalities and complementarity problems. Springer Science & Business Media, 2007.
- [8] R. Fazio, A. Jannelli, and S. Agreste, A finite difference method on non-uniform meshes for time-fractional advection–diffusion equations with a source term, Appl. Sci., 8 (2018), 960.
- [9] A. Fischer, Solution of monotone complementarity problems with locally lipschitzian functions, Math. Program., 76 (1997), 513–532.
- [10] S. Haq and M. Hussain, Selection of shape parameter in radial basis functions for solution of time-fractional Black–Scholes models, Appl. Math. Comput., 335 (2018), 248–263.
- [11] M. Holmstr¨om, Solving hyperbolic PDEs using interpolating wavelets, SIAM J. Sci. Comput., 21 (1999), 405–420.
- [12] J. Huang, Z. Cen, and J. Zhao, An adaptive moving mesh method for a time-fractional Black–Scholes equation, Adv. Differ. Equ., 1 (2019), 1–14.
- [13] G. Jumarie, Derivation and solutions of some fractional Black–Scholes equations in coarse-grained space and time. Application to Merton’s optimal portfolio, Comput. Math. with Appl., 59 (2010), 1142–1164.
- [14] M. Khaksar-e Oshagh and M. Shamsi, Direct pseudo-spectral method for optimal control of obstacle problem– an optimal control problem governed by elliptic variational inequality, Math. Methods Appl. Sci., 40 (2017), 4993–5004.
- [15] M. Khaksar-e Oshagh and M. Shamsi, An adaptive wavelet collocation method for solving optimal control of elliptic variational inequalities of the obstacle type, Comput. Math. with Appl., 75 (2018), 470–485.
- [16] M. Khaksar-e Oshagh, M. Shamsi, and M. Dehghan, A wavelet-based adaptive mesh refinement method for the obstacle problem, Eng. Comput., 34 (2018), 577–589.
- [17] M. Khaksar-e Oshagh, M. Abbaszadeh, E. Babolian, and H. Pourbashash, An adaptive wavelet collocation method for the optimal heat source problem, Int. J. Numer. Methods Heat Fluid Flow, 32 (2021), 2360–2382.
- [18] M. N. Koleva and L. G. Vulkov, Numerical solution of time-fractional Black–Scholes equation, Comput. Appl. Math, 36 (2017), 1699–1715.
- [19] J. R. Liang, J. Wang, W. J. Zhang, W. Y. Qiu, and F. Y. Ren, The solution to a bifractional Black–Scholes–Merton differential equation, Int. J. Pure Appl. Math., 58 (2010), 99–112.
- [20] H. Mesgarani, S. Ahanj, and Y. Esmaeelzade Aghdam, A novel local meshless scheme based on the radial basis function for pricing multi-asset options, Comput. Methods Differ. Equ., 10 (2022), 716–725.
- [21] H. Minbashian, H. Adibi, and M. Dehghan, An adaptive space-time shock capturing method with high order wavelet bases for the system of shallow water equations, Int. J. Numer. Methods Heat Fluid Flow, 28 (2018), 2842–2861.
- [22] S. Paolucci, Z. J. Zikoski, and D. Wirasaet, WAMR: An adaptive wavelet method for the simulation of compressible reacting flow. part I. Accuracy and efficiency of algorithm, J. Comput. Phys., 272 (2014), 814–841.
- [23] D. W. Pepper and X. Wang, An hp-adaptive finite element model for heat transfer within partitioned enclosures, Int. J. Numer. Methods Heat Fluid Flow, 18 (2008), 1000–1014.
- [24] H. Pourbashash and M. Khaksar-e Oshagh, Local RBF-FD technique for solving the two-dimensional modified anomalous sub-diffusion equation, Appl. Math. Comput., 339 (2018), 144–152.
- [25] L. Qi and J. Sun, A nonsmooth version of newton’s method, Math. Program., 58 (1993), 353–367.
- [26] Y. A. Rastigejev and S. Paolucci, Wavelet-based adaptive multiresolution computation of viscous reactive flows, Int. J. Numer. Methods Fluids., 52 (2006), 749–784.
- [27] S. M. Reckinger, O. V. Vasilyev, and B. Fox-Kemper, Adaptive wavelet collocation method on the shallow water model, J. Comput. Phys., 271 (2014), 342–359.
- [28] M. Rometsch and K. Urban, Adaptive wavelet methods for elliptic variational inequalitites I: Analysis, University of Ulm, 2010.
- [29] C. O. Sakar, G. Serbes, A. Gunduz, H. C. Tunc, H. Nizam, B. E. Sakar, M. Tutuncu, T. Aydin, M. E. Isenkul, and H. Apaydin, A comparative analysis of speech signal processing algorithms for parkinson’s disease classification and the use of the tunable q-factor wavelet transform, Appl. Soft Comput., 74 (2019), 255–263.
- [30] H. M. Srivastava and S. Deniz, A new modified semi-analytical technique for a fractional-order Ebola virus disease model, Rev. Real Acad. Cienc. Exactas Fis. Nat. - A: Mat., 115 (2021), 1–18.
- [31] M. Ulbrich, Semismooth newton methods for operator equations in function spaces, SIAM J. Optim., 13 (2002), 805–841.
- [32] S. Vahdati, M. Ahmadi Darani, and M. Ghanei, Haar wavelet-based valuation method for pricing european options, Comput. Methods Differ. Equ., 2022.
- [33] O. V. Vasilyev and N. K. Kevlahan, An adaptive multilevel wavelet collocation method for elliptic problems, J. Comput. Phys., 206 (2005), 412–431.
- [34] O. V. Vasilyev and S. Paolucci, A fast adaptive wavelet collocation algorithm for multidimensional PDEs, J. Comput. Phys., 138 (1997), 16–56.
- [35] P. Wilmott, J. Dewynne, and S. Howison, Option Pricing: Mathematical Models and Computation. Oxford Financial Press, 1993.
- [36] D. Wirasaet, Numerical solutions of multi-dimensional partial differential equations using an adaptive wavelet method, University of Notre Dame, 2007.
- [37] W. Wyss. The fractional Black–Scholes equation, 2000.
- [38] H. Xu, C. D. Cantwell, C. Monteserin, C. Eskilsson, A. P. Engsig-Karup, and S. J. Sherwin, Spectral/hp element methods: Recent developments, applications, and perspectives, J. Hydrodyn., 30 (2018), 1–22.
- [39] X. Xu, R. Mazloom, A. Goligerdian, J. Staley, M. Amini, G. J Wyckoff, J. Riviere, and M. Jaberi-Douraki, Making sense of pharmacovigilance and drug adverse event reporting: comparative similarity association analysis using ai machine learning algorithms in dogs and cats, Top. Companion Anim. Med., 37 (2019), 100366.
- [40] Z. Zhou and X. Gao, Laplace transform methods for a free boundary problem of time-fractional partial differential equation system, Discrete Dyn. Nat. Soc., 2017.
|