تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,485,613 |
تعداد دریافت فایل اصل مقاله | 15,213,102 |
تأثیر پرتودهی با گاما و مایکروویو بر تجزیهپذیری شکمبهای ماده خشک و پروتئین خام و پروتئین قابل متابولیسم کنجاله گلرنگ | ||
پژوهش های علوم دامی (دانش کشاورزی) | ||
دوره 33، شماره 2، شهریور 1402، صفحه 1-17 اصل مقاله (554.04 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/as.2022.49072.1639 | ||
نویسندگان | ||
محمد رضا عزیزی1؛ سیدروح اله ابراهیمی محمودآباد* 2؛ امیر فتاح3 | ||
1دانشگاه آزاد اسلامی واحد شهر قدس گروه علوم دامی | ||
2دانشگاه آزاد اسلامی واحد شهر قدس | ||
3دانشگاه آزاد شهر استادیار گروه علوم دامی، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد شهر قدس، تهران ، ایران قدس | ||
چکیده | ||
ازپرتوتابی میتوان به عنوان یک روش عملآوری کنجاله دانههای روغنی در تغذیه نشخوارکنندگان استفاده کرد. هدف: این آزمایش به منظور مطالعه اثرات پرتوتابی گاما و مایکروویو بر تجزیهپذیری شکمبهای ماده خشک و پروتئین خام، پروتئین قابل تجزیه در شکمبه، پروتئین قابل تجزیه مؤثر، پروتئین غیر قابل تجزیه در شکمبه، و پروتئین قابل متابولیسم کنجاله گلرنگ انجام شد. روش کار:نمونههای کنجاله گلرنگ با پرتو گاما با دزهای 20 و 40 کیلوگری و با پرتو مایکروویو با قدرت 800 وات به مدت 3 و 5 دقیقه عملآوری شد. از سه رأس گاو نژاد دشتیاری با میانگین وزن زنده10±297 کیلوگرم و دارای فیستولای شکمبهای برای تعیین تجزیهپذیری شکمبهای ماده خشک و پروتئین خام با روش کیسههای نایلونی استفاده شد. نتایج: تیمارهای مختلف اثر معنی داری بر ترکیبات شیمیایی کنجاله گلرنگ نداشتند (05/0<p). قابلیت هضم ماده خشک و ماده آلی کنجاله گلرنگ در اثر پرتوتابی کاهش یافت (05/0>p). پرتوتابی با گاما با دزهای 20 و 40 کیلوگری سبب کاهش بخش سریع تجزیه ماده خشک و پروتئین خام شد (05/0>p). تحت تأثیر پرتوتابی با مایکروویو به مدت 3 و 5 دقیقه تجزیهپذیری مؤثر ماده خشک و پروتئین خام نسبت به پرتوتابی با گاما افزایش یافت (05/0>p). پرتودهی با گاما سبب افزایش بخش کندتجزیه پروتئین خام شد (05/0>p). پرتوتابی گاما با دز 20 کیلوگری سبب افزایش پروتئین غیرقابل تجزیه در شکمبه در سرعتهای عبور 2، 5 و 8 درصد شد و همچنین پرتو گاما با دزهای 20 و 40 کیلوگری سبب کاهش پروتئین قابل تجزیه در شکمبه در سرعتهای عبور 2، 5 و 8 درصد در ساعت شد (05/0>p). پروتئین قابل متابولیسم کنجاله عملآوری شده با پرتو گاما در دزهای 20 و 40 کیلوگری و عملآوری شده با مایکروویو به مدت 3 دقیقه نسبت به گروه شاهد کاهش یافت (05/0>p). نتیجه گیری نهایی: نتایج این آزمایش نشان داد هر چند پرتودهی کنجاله گلرنگ با پرتو گاما سبب کاهش پروتئین قابل متابولیسم کنجاله گلرنگ شد؛ ولی نسبت به سایر تیمارها سبب کاهش تجزیه پذیری شکمبهای پروتئین و افزایش پروتئین غیر قابل تجزیه در شکمبه شد. | ||
کلیدواژهها | ||
پرتودهی گاما؛ پرتودهی مایکروویو؛ تجزیهپذیری شکمبهای؛ کنجاله گلرنگ | ||
مراجع | ||
Abu J O, Muller K, Duodu K G and Minnaar A 2006. Gamma irradiation cowpea (Vigna unguiculata L, Walp) flours and pastes: effects of functional, thermal and molecular properties if isolated proteins. Food Chemistry. 95:138-147.
AOAC 1990. Official Methods of Analysis, 15th ed. Association of Official Analytical Chemists, Arlington, VA, USA.
AFRC 1992. Nutritive requirements of ruminant animal: Protein. Nutrition Abstracts and Reviews. 62:787-835. CAB. International Wallingford.
Alves JLR, Goes RHT, Martinez AC, Nakamura AY, Gandra JR and Souza LCF 2018. Ruminal parameters and ruminal degradability of feedlot sheep fed safflower grains. Revista Brasileira de Saude e Producao Animal. 19: 324-335.
Aminipour H, Salamatdoost Nobar R, Maheri Sis N, Najafyar S and Salamat Azar M 2010. Determination of whole safflower seed cultivar IL-112 degradability by nylon bag method. Journal of Animal Science. 3:43-50.
Bashtani M, Farhangfar H and Ganji F 2017. Effect of pelleting on the chemical composition, nitrogen fraction and degradability characteristics of a commercial concentrate by two in vitro methods. Journal of Animal Science. 28(2): 35-50.
Ciesla K, Roos Y and Gluszewski W 2000. Denaturation processes in gamma irradiated proteins studied by differential scanning calorimetry. Radiation Physics and Chemistry. 58:233-243.
Dong X, Wang J and Raghavan V 2021. Impact of microwave processing on the secondary structure, in-vitro protein digestibility and allergenicity of shrimp (Litopenaeus vannamei) proteins. Food Chemistry. 337:127811.
Doymaz I 2014. Infrared Drying Characteristics of Bean Seeds. Journal Food Process Preservation. 39(6): 933-939.
Ebrahimi SR, Nikkhah A, Sadeghi AA and Raisali G 2009. Chmical composition, secondry compounds, ruminal degradation and in vitro crude protein digestibility of gamma irradiated canola seed. Animal Feed Science Technology. 151:184-193.
Ebrahimi SR, Nikkhah A and Sadeghi AA 2011. Changes in nutritive value and digestion kinetics of canola seed due to microwave irradiation. Asian-Australasian Journal of Animal Science. 27: 347-354.
Ebrahimi SR, Nikkhah A and Sadeghi AA 2019. Effect of microwave irradiation on nutritional value of native rapeseed meal. Journal of Animal Science (Pajoohesh and Sazandegi).126: 129-146.
Farag MDEH 1998. Effect of radiation and other processing methods on protein quality of sunflower meal. Journal of Science Food Agriculture. 79:1565-1570.
Fathi Nasri MH, France J, Danesh Mesgaran M and Kebreab E 2008. Effect of heat processing on ruminal degradability and intestinal disappearance of nitrogen and amino acid in Iranian whole soybean. Journal of Livestock Science. 113:43-51.
Fattah A, Sadeghi AA, Nikkhah A, chamani M and Shawrang P 2013. Degradation characteristics of infrared processed barley grain and its feeding effects on ruminal PH of sheep. Iranian Journal of Applied Animal Science. 3(3): 451-457.
Fellows PJ 2000. Food Processing Technology. Principles and Practice, Third Edition. CRC press, Oxford, UK.
Folawiyo YL and Apenten RKO 1997. The effect of heat- and acid-treatment on the structure of rapeseed albumin (napin). Food Chemistry. 58:237-243.
Gaber MH 2005. Effect of Gamma irradiation on molecular properties of bovine serum albumin. Journal of Bioscience Bioengineering. 100: 203-206.
Ghanbari F, Ghoorchi T, Shawrang P, Mansouri H and Torbati‐ Nejad NM 2012. Comparison of electron beam and gamma ray irradiations effects on ruminal crude protein and amino acid degradation kinetics, and in vitro digestibility of cottonseed meal. Radiation Physics and Chemistry. 81(6): 672-678.
Ghanbari F, Ghorchi T, Shawrang P, Mansouri H and Torbatinejad N 2015. Effect of irradiation on ruminal disappearance of dry matter and crude protein and in vitro digestibility of canola meal. Journal of Animal Science (pajouhesh and sazandegi). 26:55-66.
Ghorbani B, Ghoorchi T, Shawrang P and Zerehdaran S 2017. Effects of different level of gamma irradiation on barley and soybean seeds on rumen degradation rate and performance of lambs. Research on Animal Production. 8 (15): 58-67.
Jalilian S, Fatahnia F, Showrang P, Mousavi SGR and Mohammadzadeh H 2015. Effect of different irradiation methods of different protein fractions, ruminal degradability and intestinal digestibility of safflower meal protein. Journal of Animal Science. 25(2): 69-80.
Jackson FS, Barry TN, Lascano C and Palmer B 1996. The extractable and bound condensed tannin content of leaves from tropical tree. Journal of the Science of Food and Agriculture. 71: 103-110.
Kamalak A, Canbolat O, Gurbuz Y and Ozan O 2005. Protected protein and amino acids in ruminant nutrition. Journal of Science and Engineering 8: 84-88.
Lacroix M Le T C Ouattara B Yu H Letendre M Sabato S F 2002. Use of gamma irradiation to produce films from whay, casein and soya proteins: structure and functionals chacteristics. Radiation Physics and Chemistry. 63:827-832.
Lee Y, Bin-Song K 2002. Effect of g-Irradiation on the Molecular Properties of Myoglobin. Journal Biochemistry Molocular and Biology. 35(6): 590-594.
Lee SL, Lee MS and Song KB, 2005. Effect of gamma-irradiation on the physicochemical properties of gluten films. Food Chemistry 92:621-625.
Mafi H 2007. Safflower (Cultivation of Industrial Plants). Master Thesis. Islamic Azad university, Takestan Branch.
Mansuri H, Nikkhah A, Rezaeian M, Moradi Shahrbabak M and Mirhadi SA 2003. Determination of Roughages Degradability through In vitro Gas Production and Nylon Bag Techniques. Journal of Iran Agricultural Science. 34(2): 495-507.
National Research Council 2001. Nutrient Requirements of Dairy Cattle, seventh revised ed. National Academy of Sciences, Washington, D.C.
Najafyar S 2009. Estimation of metabolizable energy and intestinal digestibility of whole processed safflower seeds by laboratory and enzymatic gas production methods. Master Thesis. Islamic Azad University, Shabstar Branch.
Orskov ER and Mc Donald IM 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science. 92: 499 -503.
Orskov ER and McDonald IM 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. Journal of Agricultural Science 127:113-123.
Piradl E Pirmohammadi R and Khalilvandi H 2017. Effect of gamma irradiation on barley grain varieties on changes of chemical compounds and rumen starch and crude protein degradability. Journal of Animal Science. 1:153-173.
Sadeghi AA and Shawrang P 2008. Effects of microwave irradiation on ruminal dry matter, protein and starch degradation characteristics of barley grain. Animal Feed Science and Technology. 141: 184-194.
Sarvari S, Hosseinkhani A, Taghizadeh A, Janmohammadi H and Mohammadzadeh H 2017. The effect of variety and roasting on physical characteristics and ruminal degradability of barley grain. Journal of Animal Science. 27: 47-63.
Samadi S and Yu P 2011. Dry and moist heating-induced changes in protein molecular structure, protein subfraction, and nutrient profiles in soybeans. Journal of dairy Science. 94:6092-6102.
Schwab CG Boucher SE and Sloan BK 2007. Metabolizable protein and amino acid nutrition of the cow. In: Proceedings of the Cornell Nutrition Conference for Feed Manufacturers. P. 121-138.
Shawrang P and Sadeghi AA 2006. Effects of gamma irradiation on protein degradation of safflower meal in the rumen. Proceedings of the British Society of Animal Science.University of York, UK. PP 168.
Shawrang P Nikkhah A Sadeghi AA Zareh A and Raisali G 2006. Monitoring the fate of gamma irradiated canola meal proteins in the rumen. Journal of Animal Science. 84, Suppl. 1/ Journal of Dairy Science. 89. (Suppl.1). pp. 368.
Shawrang P, Nikkhah A, Sadeghi AA, Zareh A ,Raisali G and Moradi Shahrebabak M 2007. Effects of gamma irradiation on protein degradation of soybean meal in the rumen. Animal Feed Science and Technology. 134: 140-151.
Shawrang P, Nikkhah A, Sadeghi AA, Zareh A, Raisali G and Moradi Shahrebabak M 2008. Effect of gamma irradiation on chemical composition and ruminal protein degradation of canola meal. Radiation Physics and Chemistry. 77: 918-922.
Shawrang P, Jalilian S, Fatahnia F, Sadeghi AA and Mehrabi AA 2017. The effects of irradiation from gamma, electron beam, microwave and infrared sources on ruminal degradability and in vitro digestibility of soybean meal. Journal of Animal Science Research. 27(4): 217-229.
Sheikhalipoor A, Hosseinkhani A, Taghizadeh A and Mohammadzadeh H 2018. Effect of different heat processing methods on nutritive value of common vetch seed in ruminant. Iranian Journal of Animal Science. 49(3): 427-436.
Shishir SR, Brodie G, Cullen B, Kaur R Cho K and Cheng L 2020. Microwave heat treatment induced changes in forage hay digestibility and cell microstructure. Applied Science. 10: 1-11.
Siddhuraju P, Makkar HPS and Becker K 2002. The effect of ionizing radiation on antinutritional factors and the nutritional value of plant materials with reference to human and animal food. Food Chemistry. 78: 187-205.
Stern M, Santos K and Satter L 1985. Protein degradation in rumen and amino acid absorption in small intestine of lactating dairy cattle fed heat-treatment whole soybeans. Journal of Dairy Science. 68:45-56.
Taghinejad-Roudbaneh M, Kazemi-Bonchenari M, Salem AZM and Kholif AE, 2016. Influence of roasting, gamma ray irradiation and microwaving on ruminal dry matter and crude protein digestion of cottonseed. Italian Journal of Animal Science. 15: 144-150.
Taghinejad-Roudbaneh M Ebrahimi SR Azizi S and Shawrang P 2010. Effect of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal. Radiation Physics and Chemistry. 79, 1264-1269.
Taibipour k and Kermanshahi H 2004.Effect of levels of tallow and NSP degrading enzyme supplements on nutrient efficiency of broiler chickens. Proceeding of the Annual Conference of the British Society of Animal Science 273: 5-7. University of York, UK.
Tilly JMA and Terry RA 1963 A two stages technique for the in vitro digestion of forage crops. Journal British Grassland Society. 18: 104-111.
Van Soest PJ, Robertson JB and Lewis BA 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 74, 3583-3597.
Van Soest PJ 1994. Nutritional Ecology of the Ruminant. 2nd Edition. Cornell University Press. NY. USA.
Wahyono T, Lelananingtyas N and Sihono S, 2017. Effects of gamma irradiation on ruminal degradation of Samurai 1 Sweet Sorghum. At Indones. 43(1): 35-39.
Yan X, Khan NA, Zhang F, Yang L and Yu P 2014. Microwave irradiation induced changes in protein molecular structures of barley grains: relationship to changes in protein chemical profile, protein subfractions, and digestion in dairy cows. Journal of Agriculture and Food Chemistry. 62(28):6546-6555.
Zarei M, Kafilzadeh F and Shawrang P 2016. In vitro gas production and dry matter digestibility of irradiated pomegranate (Punica granatum) seeds. Iranian Journal of Applied Animal Science. 6(1): 25-34. | ||
آمار تعداد مشاهده مقاله: 348 تعداد دریافت فایل اصل مقاله: 288 |