- [1] P. Albrecht and M. P. Klein, Extrapolated iterative methods for linear systems approximation, SIAM J. Numer. Anal., 21(1) (1984), 192-201.
- [2] G. Alefeld and G. Mayer, Interval analysis: theory and applications, J. Comput. Appl. Math., 121(1-2) (2000), 421-464.
- [3] G. Birkho, Lattice theory, Colloquium Publications, 25, AMS, Providence, RI (1940).
- [4] J. Brains, IntelliJ IDEA (2000). URL https://www.jetbrains.com/idea/
- [5] E. Hansen, On the solution of linear algebraic equations with interval coefficients, Linear Algebra Appl., 2(2) (1969), 153-165.
- [6] R. A. Horn and C. R. Johnson, Matrix Analysis (2nd ed.), Cambridge University Press, Cambridge, UK (2012).
- [7] L. Jaulin, M. Kieer, O. Didrit, and E. Walter, Applied Interval Analysis, Springer, London (2001).
- [8] A. Y. Karlyuk, Numerical method for finding algebraic solution to islae based on triangular splitting, Comput. technol. (in Russian), 4(4) (1999), 14-23.
- [9] E. Kaucher, Über metrische und algebraische Eigenschaften einiger beim numerischen Rechnen auftretender Räume, Ph.D. dissertation, Universität Karlsruhe, Karlsruhe 1973.
- [10] E. Kaucher, Algebraische erweiterungen der intervallrechnung unter erhaltung der ordnungs-und verbandsstruk- turen, in: Grundlagen der Computer-Arithmetik (R. Albrecht, U. Kulisch, eds.). Computing Supplementum, vol. 1. Springer, Vienna, (1977), 65-79.
- [11] E. Kaucher, Interval analysis in the extended interval space IR, in: Fundamentals of Numerical Computation (Computer-Oriented Numerical Analysis) (G. Alefeld, R.D. Grigorieff, eds.). Computing Supplementum, Springer, Vienna, 2 (1980), 33-49.
- [12] R. B. Kearfott, M. T. Nakao, A. Neumaier, S. M. Rump, S. P. Shary, and P. Van Hentenryck, Standardized notation in interval analysis, in: Proc. XIII Baikal International School-seminar "Optimization methods and their applications", Irkutsk, Baikal, July 2-8, 2005. Vol. 4 "Interval analysis". - Irkutsk: Institute of Energy Systems SB RAS, 2005, 106-113.
- [13] A. V. Lakeyev, Linear algebraic equations in kaucher arithmetic, Reliab. Comput., (Supplement (Extended Ab- stracts of APIC’95: International Workshop on Applications of Interval Computations, El Paso, TX, Febr. 23-25, 1995)) (1995), 130-133.
- [14] P. Lancaster and M. Tismenetsky, The Theory of Matrices: With Applications, Academic Press, Orlando, FL, (1985).
- [15] G. Y. Meng and R. P. Wen, Self-adaptive extrapolated gauss-seidel iterative methods, J. Math. Study, 48(1) (2015), 18-29.
- [16] R. E. Moore, Methods and Applications of Interval Analysis, SIAM, Philadelphia, PA, (1979).
- [17] S. Markov, An iterative method for algebraic solution to interval equations, Appl. Numer. Math., 30(2-3) (1999), 225-239.
- [18] R. E. Moore, R. B. Kearfott and M. J. Cloud, Introduction to Interval Analysis, SIAM, Philadelphia, PA (2009).
- [19] K. Nickel, Die Auflo¨sbarkeit linearer Kreisscheiben- und intervall-Gleichungssysteme, Linear Algebra Appl., 44 (1982), 19-40.
- [20] A. Neumaier, Linear interval equations, in: Interval Mathematics 1985 (K. Nickel, ed.), IMath 1985. Lecture Notes in Computer Science, vol. 212, Springer, Berlin, Heidelberg, (1986), 109-120.
- [21] A. Neumaier, Interval Methods for Systems of Equations, 37, Cambridge university press, Cambridge, UK (1990).
- [22] W. Oettli, On the solution set of a linear system with inaccurate coefficients, J. SIAM Numer. Anal. Ser. B, 2(1) (1965), 115-118.
- [23] W. Oettli and W. Prager, Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides, Numer. Math., 6(1) (1964), 405-409.
- [24] J. Rohn, Inner solutions of linear interval systems, in: Interval Mathematics 1985 (K. Nickel, ed.), IMath 1985. Lecture Notes in Computer Science, vol. 212, Springer, Berlin, Heidelberg, (1986), 157-158.
- [25] M. A. Sainz, E. Gardenes, and L. Jorba, Formal solution to systems of interval linear or non-linear equations, Reliab. Comput., 8(3) (2002), 189-211.
- [26] S. P. Shary, A new technique in systems analysis under interval uncertainty and ambiguity, Reliab. Comput., 8(5) (2002), 321-418.
- [27] S. P. Shary, Algebraic approach in the "outer problem" for interval linear equations, Reliab. Comput., 3(2) (1997), 103-135.
- [28] S. P. Shary, Algebraic approach to the interval linear static identication, tolerance, and control problems, or one more application of kaucher arithmetic, Reliab. Comput., 2(1) (1996), 3-33.
- [29] S. P. Shary, Parameter partition methods for optimal numerical solution of interval linear systems, in: Compu- tational Science and High Performance Computing III ( E. Krause, Y.I. Shokin, M. Resch, N. Shokina, eds.), Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 101. Springer, Berlin, Heidelberg, (2008), 184-205.
- [30] S. P. Shary, Numerical computation of algebraic solution to interval linear systems, Discrete Math (in Russian), (1996), 129-145.
- [31] S. P. Shary, Numerical computation of formal solutions to interval linear systems of equations, arXiv preprint arXiv:1903.10272 (2019).
- [32] S. P. Shary, On optimal solution of interval linear equations, SIAM J. Numer. Anal., 32(2) (1995), 610-630.
- [33] S. P. Shary, Finite-Dimensional Interval Analysis, (XYZ Publishers, Institute of Computational Technologies SB RAS, Novosibirsk, 2020) (in Russian).
- [34] R. Shokrpour and E. Ebadi, Extrapolated positive denite and positive semi-definite splitting methods for solving non-Hermitian positive definite linear systems, Appl. Math., 67(3) (2022), 251-272.
- [35] R. Shokrpour and E. Ebadi, Extrapolated diagonal and off-diagonal splitting iteration method, Filomat, 36(8) (2022), 2749-59.
- [36] R. S. Varga, Matrix Iterative Analysis, Springer Series in Computational Mathematics, 27, Springer Berlin, Heidelberg, 1999.
- [37] M. E. Wieser and T. B. Coplen, Atomic weights of the elements 2009 (iupac technical report), Pure Appl. Chem., 83(2) (2010), 359-396.
- [38] D. M. Young, Iterative Solution of Large Linear Systems, Academic Press, Orlando, FL (1971).
- [39] V. Zyuzin, An iterative method for solving system of algebraic segment equations of the first order, Dierential Equations and the Theory of Functions, Saratov State University, Saratov (in Russian), (1990), 72-82.
|