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Jafar Biazar∗ and Hamed Ebrahimi

Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Guilan, P.O. Box 41335-1914, P.C.4193822697, Rasht, Iran.

Abstract

In the current study, a one-step numerical algorithm is presented to solve strongly non-linear full fractional duffing
equations. A new fractional-order operational matrix of integration via quasi-hat functions (QHFs) is introduced.

Utilizing the operational matrices of QHFs, the main problem will be transformed into a number of univariate

polynomial equations. Absolute errors of the results in approximations and convergence analysis are addressed.
Ultimately, five examples are provided to illustrate the capabilities of this algorithm. The numerical results are

illustrated in some Tables and Figures, for different values of the parameters α and β.
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1. Introduction

The mathematical modeling of many phenomena in various branches of science leads to non-linear differential
equations. A differential equation handles the damped, driven oscillator [1].
Many scientists have applied fractional calculus to describe their models in sciences and engineering fields [19]. One
of the most popular differential equations are the Duffing-type oscillator, which was first introduced by Georg Duffing
in 1918 [17]. A physical system that consists of a steel ball of mass m , two strong magnets, and a light flexible
rod. Figure 1 shows a Duffing oscillator system. These kinds of equations appear in the field of signal processing
[31], foundations and bridges [9], waves, and brain modelling [4, 13], etc. In most cases, it is impossible to obtain an
analytical solution to differential equations. As a result, the introduction of numerical algorithms is very important
to obtain approximate solutions, so various numerical methods were developed to solve these types of equations by
many researchers. Some of the prominent methods are Adomian decomposition, Homotopy analysis [8, 12], modified
differential transform [21, 24], collocation [7, 23], Galerkin [3, 6], product integration [5, 28], Rationalized haar wavelets
[10, 15], Jacobi wavelets [18], Chebyshev wavelets [2], Hermite cubic splines [11], Taylor series [14], etc.
(1): If a system is modeled by fractional order, a higher-order system can be modeled by a lower-order model.
(2): The nature of many systems makes it possible to model them more accurately using fractional functional equations.
(3): In general, a fractional model includes an integer-order model, as well.
In this work, we consider the following non-linear full fractional duffing equation:

C
0 D

β
t u(t) + µ0

C
0 D

α
t u(t) = g(t) +

4∑
k=1

µk
(
u2k−1(t)

)
, 1 < β ≤ 2, 0 < α ≤ 1,

u(i)(0) = u
(i)
0 , i = 0, 1, ..., dβe − 1, t ∈ I(T ),

(1.1)

where u(t) is an unknown function to be determined, µk, k = 0, ..., 4 are the appropriate parameters, g(t) is a known

continuous function on I(T ) := [0, T ], and C
0 D

β
t is the Caputo fractional differential operator of order β. Some numer-

ical methods convert such a Duffing equation into a system of algebraic equations that can be easily solved. Yusufoglu
has proposed the Laplace decomposition algorithm to solve a Duffing equation [33]. Rad et al. applied a numerical
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Figure 1. Duffing oscillator system.

method based on the radial basis functions for solving the nonlinearly controlled Duffing oscillator [27]. Pirmohabbati
et al. used block-pulse wavelets to solve non-linear oscillatory and vibration equations [25]. Zhang et al. applied a
finite difference scheme to give approximate solutions for a class of the fractional Duffing equations [34]. Issa et al.
utilized the shifted Gegenbauer polynomial to solve a one-dimensional space fractional diffusion equation [16]. Also,
a numerical solution to a non-linear Duffing equation via a hybrid method is suggested by Torkzadeh [29].
In this paper, we introduce a numerical algorithm for the problem (1.1) in terms of QHFs. The present work discusses
some of the properties of Riemann-Liouville integral operators to solve the non-linear full fractional Duffing equations.
Using the operational matrix method, the principal problem will be reduced to solving several non-linear univariate
polynomial equations. In section 2, some basic definitions and characteristics of the fractional calculus are presented.
Section 3 is devoted to introducing the operational matrix of QHFs basis. Fourth section studies the absolute error
of approximation of a function by a truncated series of QHFs. The fifth section presents a numerical method for the
problem (1.1).
The convergence analysis of the proposed method is discussed in section 6. To demonstrate the validity and accuracy
of the utilized approach, five numerical examples are provided in section 7, and the paper ends in section 8, with a
conclusion and discussion.

2. Basic concepts and definitions

In this section, some definitions, properties, and preliminaries of the fractional calculus theory that will be used in
this manuscript are explained.

2.1. Fractional order integral and differential operators.

Definition 2.1. Let n− 1 <α≤ n, α > 0, t > 0. The operator c0D
α
t u(t) defined as [26]

c
0D

α
t u(t) =

{
1

Γ(n−α)

∫ t
0

(t− τ)
n−α−1 dn

dτnu(τ)dτ, n− 1 < α ≤ n,
u(n)(t), α = n ,

(2.1)

is called the Caputo fractional differential operator of order α.
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Definition 2.2. The Riemann-Liouville integral operator of order α is defined as [26]

Iαt u(t) =
1

Γ(α)

∫ t

0

(t− τ)
α−1

u(τ)dτ, (2.2)

where Γ(x) is the gamma function: Γ(x) =
∫∞

0
tx−1e−tdt.

The Riemann–Liouville integral operator and the Caputo fractional derivative operator (2.1) satisfies the following
properties [26]:

Iαt (C◦ D
α
t u(t)) = u(t)−

n−1∑
i=0

u(i)(0)
ti

i!
, n− 1 < α ≤ n, (2.3)

and we get

Iβt (C◦ D
α
t u(t)) =

(
Iβ−αt u(t)

)
−

(
n−1∑
i=0

u(i)(0)

i!
Iβ−αt ti

)
, n− 1 < α ≤ n, α < β. (2.4)

2.2. Definition of QHFs. Let us state here some definitions and properties regarding QHFs. These functions are
established based on the idea of the hat functions [7, 30]. Quasi-hat functions are defined on the closed interval [0, T ],
and has a hat-like shape, the interval is divided into n subintervals [ih, (i+ 1)h], i = 0, 1, 2, ..., n− 1, of equal lengths
h, where h = T

n , and n ≥ 2 is an even positive integer.
QHFs are defined as follows for i even, and 0 ≤ i ≤ n;

φi(t) =

{
1

2h2 (t− (i+ 1)h)(t− (i+ 2)h), ih ≤ t < (i+ 2)h,
0, otherwise,

(2.5)

when i is odd, and 1 ≤ i ≤ n− 1;

φi(t) =

{
− 1

2h2 (t− (i− 1)h)(t− (i+ 2)h), (i− 1)h ≤ t < (i+ 1)h,
0, otherwise.

(2.6)

A function u(t) can be expressed in terms of QHFs as follows

u(t) ' un(t) =

n∑
i=0

aiφi(t) = ATΦ(t) = Φ(t)TA, (2.7)

so that

Φ(t) = [φ0(t), φ1(t), ..., φn(t)]
T
, (2.8)

and

A = [a0, a1, ..., an]
T
. (2.9)

wherein ai = u(ih), i = 0, ..., n, are unknown coefficients of the QHFs.

2.2.1. Properties of QHFs. The following properties can be achieved by using the QHFs definition

n∑
i=0

φi(t) = 1, φi(jh) =

{
1, i = j,
0, i 6= j.

(2.10)

Multiplying both sides of this summation to φj(t), gives(
n∑
i=0

φj(t)φi(t)

)
= φj(t), (2.11)
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thus, for t = jh, we attain

n∑
i=0

φj(jh)φi(jh) = φj(jh),

[(φj(jh)φ0(jh)) + ...+ (φj(jh)φj(jh)) + ...+ (φj(jh)φn(jh))] = ψj(jh),
[(φj(jh)× 0) + ...+ (φj(jh)× φj(jh)) + ...+ (φj(jh)× 0)] = φj(jh),

(2.12)

consequently

φj(jh)φj(jh) = φj(jh). (2.13)

Taking these properties, one has

φi(t)φj(t) ≈
{
φi(t), j = i,
0, j 6= i.

(2.14)

Then, from the relations (2.14 ) and (2.8), it can be concluded that

Φ(t)ΦT (t) ' diag[φ0(t), φ1(t), ..., φn−1(t), φn(t)]
T
. (2.15)

2.2.2. Non-linear approximation of QHFs. Using (2.15) and (2.7), um(t) , m = 1, 2, ..., can be calculated as follows

u2(t) 'ATΦ(t)ΦT (t)A = AT diag(Φ(t))A = AT diag(A)Φ(t)
= AT

2 Φ(t), A2 = [a2
0, a

2
1, ..., a

2
n]T ,

u3(t) 'u2(t)u(t) = A
T
2 Φ(t)ΦT (t)A = AT

2 diag(Φ(t))A = AT
2 diag(A)Φ(t)

= AT
3 Φ(t), A3 = [a3

0, a
3
1, ..., a

3
n]T ,

...

um(t) '
n∑
i=0

ai
mφi(t) = AT

mΦ(t), Am = [am0 , a
m
1 , ..., a

m
n ]T .

(2.16)

3. Operational matrices of QHFs

In this part of the study, we obtain the fractional-order integral operational matrix using quasi-hat functions.

3.1. Fractional order operational matrix of integration. We state the following theorem:

Theorem 3.1. Let Φ(t) be given by (2.8) and α > 0, then

Iαt Φ(t) ' QαΦ(t). (3.1)

where Qα is called (n+ 1)× (n+ 1) operational matrix of fractional integration of order α and is defined as follows:

Q(α) =
hα

2Γ(α+ 3)



0 ρ1 ρ2 ρ3 ρ4 ... ρn−1 ρn
0 σ1 σ2 σ3 σ4 ... σn−1 σn
0 0 0 ρ1 ρ2 ... ρn−3 ρn−2

0 0 0 σ1 σ2 ... σn−3 σn−2

0 0 0 0 0 ...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 ... ρ1 ρ2

0
0

0
0

0
0

0
0

0
0

...
σ1

0
σ2

0


, (3.2)
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where

ρ1 = α (2α+ 3) ,

ρk =
(
kα+1(2k − 3α− 6) + 2kα(α+ 1)(α+ 2) + (k − 2)

α+1
(2− 2k − α)

)
,

k = 2, 3, ..., n,
σ1 = 3α+ 4,
σk = (k − 2)α+1(2k + α− 2)− 2(k − 2)α(2 + α)(1 + α)− (k)α+1(2k − 6− 3α),
k = 2, 3, ..., n.

(3.3)

Proof. First, for φi(t), i = 0, ..., n, we have the definition of the Riemann-Liouville integral operator as follows

Iαt φi(t) =
1

Γ(α)

∫ t

0

(t− τ)
α−1

φi(τ)dτ. (3.4)

Now, we approximate the integral by an expression in terms of QHFs, as follows

Iαt φi(t) '
n∑
j=0

γijφj(t), i = 0, ..., n, (3.5)

where the coefficients γij are the values of Iαt φi(t), namely Eq. (3.4), at the jh point. Thus, we have

γij =
1

Γ(α)

∫ jh

0

(jh− τ)
α−1

φi(τ)dτ, i, j = 0, 1, ..., n. (3.6)

Using Eqs. (2.5-2.6), we calculate the integral (3.6). For even i’s, and even n, i = 0, 2, ..., n, by substituting (2.5) in
(3.6), we introduce the coefficients as follows:

γij =


0, j ≤ i,

hα

2Γ(α+3) (α(2α+ 3)) , j = i+ 1,

hα

2Γ(α+3)

 (j − i)α+1(2j − 2i− 3α− 6)
+2(j − i)α(α+ 1)(α+ 2)
−(j − i− 2)α+1(2j − 2i− 2 + α)

 , j > i+ 1.

(3.7)

Now we attain (3.6) for odd i’s:

γij '


0, j < i,

hα

2Γ(α+3) (3α+ 4), j = i,

hα

2Γ(α+3)

 (j − i− 1)α+1(2j − 2i+ α)
−2(j − i− 1)α(α+ 1)(α+ 2)
−(j − i+ 1)α+1(2j − 2i− 3α− 4)

 , j > i.

(3.8)

Consider 2k
′

= i in Eqs. (3.7), 2k
′
+ 1 = i in Eqs. (3.8), then apply 2k

′
+ k = j to both Eqs. (3.7, 3.8), k

′
, k = 0, ..., n.

Some simple manipulations completes the proof. �

For instance, when α = 1, for the operational matrix (3.2), and even n, we get

ρ1 = 5, ρk = 4, k = 2, ..., n,
σ1 = 7, σk = 20, k = 2, ..., n.

(3.9)

In order to approximate a non-linear function with QHFs, we can use (2.16) and (3.1), as follows:

Iαt u
m(t) ' Iαt

(
n∑
i=0

am
i
φi(t)

)
' Iαt

(
AT
mΦ(t)

)
' AT

mQ
αΦ(t), m = 1, 2, .... (3.10)
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4. Error Analysis

This section aims to determine a formula for the absolute error when we approximate a function with QHFs. Let
us approximate a function u(t), as (2.7). So we have

un(t) =

n∑
i=0

u(ih)φi(t), (4.1)

for t ∈ (jh, (j+ 1)h), j = 0, 2, 4, ..., n, h = T/n, and even n, using (2.5− 2.6) and doing some computation, we obtain

un(t) =

n∑
i=0

u(ih)φi(t) = u(jh)φj(t) + u(jh+ h)φj+1(t)

= u(jh)

(
(t− (j + 1)h) ((t− (j + 2)h))

2h2

)
+ u(jh+ h)

(
(t− (j)h) ((t− (j + 3)h))

−2h2

)

= u(jh)


(

(t− jh)
2 − 3h(t− jh) + 2h2

)
2h2

− u(jh+ h)

(
(t− jh)

2 − (t− jh)3h

2h2

)

= u(jh) + (t− jh)

(
−3u(jh) + 3u(jh+ h)

2h

)
− (t− jh)

2

2h

(
u(jh+ h)− u(jh)

h

)
,

thus, assuming h→ 0, for even n and j = 0, 2, 4, ..., n, one has

un(t) = u(jh) +
3

2
(t− jh)u′(jh)− (t− jh)

2

2h
u′(jh) +O(t− jh)2. (4.2)

A two terms Taylor expansion of u(t) around the point t = jh can be written as the following,

u(t) =

1∑
k=0

(t− jh)
k

k!
u(k)(jh) +O(t− jh)2. (4.3)

The difference operation of (4.2) from (4.3) yields to

un(t)− u(t) =
1

2

(
(t− jh)− (t− jh)

2

h

)
u′(jh) +O(t− jh)2. (4.4)

Let E = {k ∈ Q| ∀t, h, t = kh}, result in

un(kh)− u(kh) =
hf ′(jh)

2
((k − j)(1− (k − j))) +O((k − j)h)

2
, (4.5)

where k ∈ (j, j + 1). Also, for t ∈ (jh, (j + 1)h), j = 1, 3, 5, ..., n− 1, h = T/n, and even n, we get

un(t) =

n∑
i=0

u(ih)φi(t) = u(jh− h)φj−1(t) + u(jh)φj(t)

= u(jh− h)

(
(t− jh) ((t− (j + 1)h))

2h2

)
+ u(jh)

(
(t− (j − 1)h) ((t− (j + 2)h))

−2h2

)
= u(ih) +

(t− jh)

2

(
u(jh)− u(jh− h)

h

)
− (t− jh)

2

2h

(
u(jh)− u(jh− h)

h

)
.

So, assuming h→ 0, for even n and j = 1, 3, 5, ..., n− 1, results in

un(t) = u(jh) +
1

2
(t− jh)u′(jh)− (t− jh)

2

2h
u′(jh) +O(t− jh)2. (4.6)
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From (4.6), for the absolute error at the points t ∈ (jh, (j + 1)h), we have

u(t)− un(t) =
1

2

(
(t− jh) +

(t− jh)
2

h

)
u′(jh) +O(t− jh)2, (4.7)

Let E = {∀t, h , ∃k ∈ Q, t = kh}, for t ∈ (jh, (j + 1)h), and even n, j = 1, 3, ..., n− 1, h→ 0, one obtains

u(kh)− un(kh) =
hu′(jh)

2
((k − j)(1 + k − j)) +O((k − j)h)

2
. (4.8)

where k ∈ (j, j + 1). Finally, for t ∈ (jh, (j + 1)h), j = 0, 1, 2, ..., n and h→ 0 using (4.5) and (4.8), we have

|u(t)− un(t)| = h |u′(jh)|
2

∣∣∣(k − j)(1 + (−1)
j+1

(k − j))
∣∣∣+O

(
(k − j)
h

)2

. (4.9)

Since k ∈ (j, j + 1) and nh = T , from (4.9), we get

|u(t)− un(t)| ≤ T |u′(jh)|
n

+O

(
1

n2

)
. (4.10)

In the case of k → j, j = 0, ..., n, we attain

|u(jh)− un(jh)| → 0, (4.11)

and ∀k, as h→ 0 or n→∞, we get

|u(t)− un(t)| → 0. (4.12)

5. Numerical algorithm

In this section, a numerical algorithm is offered to solve the problem (1.1). Consider the following fractional Duffing
equation

C
0 D

β
t u(t) + µ0

C
0 D

α
t u(t) = g(t) +

4∑
k=1

µk
(
u2k−1(t)

)
, 1 < β ≤ 2, 0 < α ≤ 1,

u(i)(0) = u
(i)
0 , i = 0, 1, ..., dβe − 1,

(5.1)

First, by applying Riemann–Liouville integral operator of order β on the both sides of Eq. (5.1), one gets

Iβt (C◦ D
β
t u(t)) + µ0I

β
t (C◦ D

α
t u(t)) = Iβt g(t) + Iβt

(
4∑
k=1

µk
(
u2k−1(t)

))
. (5.2)

Because of (2.3) and (2.4) we have

Iβt (C◦ D
β
t u(t)) = u(t)− u(0)− u′(0)t, 1 < β ≤ 2, (5.3)

Iβt (C◦ D
α
t u(t)) =

(
Iβ−αt u(t)

)
−
(
Iβ−αt u(0)

)
, 0 < α ≤ 1, α < β,

then, taking (2.2) into account:

Iβt (C◦ D
α
t u(t)) =

(
Iβ−αt u(t)

)
− u(0)

Γ(β − α+ 1)

(
tβ−α

)
, 0 < α ≤ 1, α < β. (5.4)

Substituting Eqs. (5.3)- (5.4) into Eq. (5.2), we get:

u(t) + µ0

(
Iβ−αt u(t)

)
−

4∑
k=1

µkI
β
t

(
u2k−1(t)

)
− Iβt g(t)− w(t) = 0, (5.5)

where

w(t) = u(0) + u′(0)t+
µ0u(0)

Γ(β − α+ 1)

(
tβ−α

)
.
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Using (2.7) and (2.16), the functions u2k−1(t), g(t) and w(t) can be expressed in terms of QHFs as follows

u2k−1(t) '
n∑
i=0

ai
2k−1φi(t) = AT

2k−1Φ(t), A2k−1 = [a2k−1
0 , a2k−1

1 , ..., a2k−1
n ]T , k = 1, 2, 3, 4, (5.6)

g(t) '
n∑
i=0

g(ih)ψi(t) = GTΨ(t), G = [g(0), g(h), ..., g(nh)]T , (5.7)

and

w(t) '
n∑
i=0

w(ih)ψi(t) = WTΨ(t), G = [W (0),W (h), ...,W (nh)]T , (5.8)

wherein n is an even positive integer. Utilizing (3.1), (3.2), and (3.10) and substitution of (5.6-5.8) in Eq. (5.5) results
in,

A1
TΦ(t) + µ0

(
A1Q

(β−α)Φ(t)
)
−

4∑
k=1

µkA
T
2k−1

Q(β)Φ(t)−GTQ(β)Φ(t)−WTΦ(t) = 0,(
A1

T + µ0

(
A1Q

(β−α)
)
−

4∑
k=1

µkA
T
2k−1

Q(β) −GTQ(β) −WT

)
Φ(t) = 0,

A1
T + µ0

(
A1Q

(β−α)
)
−

4∑
k=1

µkA
T
2k−1

Q(β) −GTQ(β) −WT = 0, 0 < α ≤ 1, 1 < β ≤ 2, (5.9)

this system has the dimension (n+ 1)× (n+ 1). Suppose that

Q(β) = [γij ] , Qβ−α = [θij ] , i, j = 0, 1, 2, ..., n, (5.10)

so, from the operational matrix (3.2) one gets

γi0 = θi0 = 0, i = 0, 1, 2, ..., n,

γni = θni = 0, i = 1, 2, ..., n,

γij = θij = 0, j = 1, 3, ..., n− 1, i = j + 1, j + 2, ..., n,

γij = θij = 0, j = 2, 4, ..., n, i = j, j + 1, ..., n.

Eq. (5.9) can be used to determine the unknown coefficients, starting to find the first unknown coefficient

a0 = w(0), (5.11)

in the next step, we have

eq1 : a1 + µ0

[
1∑
i=0

θi1ai

]
−

[
4∑
k=1

1∑
i=0

µkγi1a
2k−1
i

]
−

[
1∑
i=0

g(ih)γi1

]
− w(h) = 0,

solving eq1, a univariate equation, allows us to calculate a1 and we can obtain a2 as follows

eq2 : a2 = −µ0

[
1∑
i=0

θi2ai

]
+

[
4∑
k=1

1∑
i=0

µkγi2a
2k−1
i

]
+

[
1∑
i=0

g(ih)γi2

]
+ w(2h),

then

eq3 : a3 + µ0

[
3∑
i=0

θi3ai

]
−

[
4∑
k=1

3∑
i=0

µkγi3a
2k−1
i

]
−

[
3∑
i=0

g(ih)γi3

]
− w(3h) = 0,
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unknown parameter a3 is calculated by solving eq3, then we find a4 as follows

eq4 : a4 = −µ0

[
3∑
i=0

θi4ai

]
+

[
4∑
k=1

3∑
i=0

µkγi4a
2k−1
i

]
+

[
3∑
i=0

g(ih)γi4

]
+ w(4h),

The process can be continued up to the following.

eqn−1 : an−1 + µ0

[
n−1∑
i=0

θi(n−1)ai

]
−

[
4∑
k=1

n−1∑
i=0

µkγi(n−1)a
2k−1
i

]
−

[
n−1∑
i=0

g(ih)γi(n−1)

]
− w((n− 1)h) = 0,

accordingly, after determining the value of the unknown coefficient an−1 in this equation, the value of an will be
determined as follows:

eqn : an = −µ0

[
n−1∑
i=0

θinai

]
+

[
4∑
k=1

n−1∑
i=0

µkγina
2k−1
i

]
+

[
n−1∑
i=0

g(ih)γin

]
+ w(nh). (5.12)

Therefore, by determining the coefficients, we can obtain an approximate solution via (2.7). To solve the nonlinear
equations, see [32]. We utilized the MATLAB package to handle the computations. In order to illustrate the proposed
method better, the following theorem is presented.

Theorem 5.1. Consider the main problem Eq.(1.1). To obtain a numerical solution to Eq.(1.1) using QHFs, the
following iterative algorithm in pseudocode is offered:

Algorithm: Quasi− hat functions for Duffing equations
1 Input n (even), α, β, µk, k = 0, 1, ..., 4, T, g(t), u(0), u′(0).

2 Set h = T/n, ti = ih, i = 0, ..., n.

3 w(t) = u(0) + u′(0)t+
µ0u(0)

Γ(β − α+ 1)

(
tβ−α

)
.

4 . Compute the elements of Q(β) = [θij ] , and Q
(β−α) = [γij ] , i, j = 0, ..., n.

5 . Set and solve recursive univariate equation v, v = 1, 3, 5, ..., n− 1.∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 ← w(0)
for v = 1 to n− 1, v = odd number

. solution of the vth equation v, determines the unknown parameter.

equation v :

{
av + µ0

[
v∑
i=0

θivai

]
−
[

4∑
k=1

v∑
i=0

µkγiva
k
i

]
−
[
v∑
i=0

g(ih)γiv

]
− w(vh) = 0

. and we can get

av+1 = −µ0

[
v∑
i=0

θi(v+1)ai

]
+

[
4∑
k=1

v∑
i=0

µkγi(v+1)a
k
i

]
+

[
v∑
i=0

g(ih)γi(v+1)

]
+ w((v + 1)h).

6 . Calculate fully ai, i = 0, 1, ..., n.

7 . Define QHFs : (φi(t)), i = 0, 1, ..., n.

8 . Determine the approximate solutions : un(t) =

n∑
i=0

aiφi(t).

6. Convergence Analysis

In this section, we will verify the convergence of the numerical solution based on the proposed method.

Theorem 6.1. Let un(t), t ∈ (ih, (i+ 1)h), i = 0, 1, 2, ..., n, h = T/n, and even n, be the numerical solution of Eq.
(1.1) obtained by the method proposed in section 5, u(t) is its exact solution and En(t) is the residual error for the
numerical solution. Also, suppose d, d, b, and M are positive constants such that |u′(t)| ≤ M. Then, En(t) tends to
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zero, when n→∞, where

d = sup
t,τ∈[0,T ]

∣∣∣Γ−1(β − α)(t− τ)
β−α−1

∣∣∣, d = sup
t,τ∈[0,T ]

∣∣∣LΓ−1(β)(t− τ)
β−1
∣∣∣, and b = sup

{
T
n +O

(
1
n2

)}
.

Proof. Applying (2.3) and (5.5), it is suitable to rewrite Eq. (1.1) in the integral form

u(t) + µ0

(
Iβ−αt u(t)

)
−

4∑
k=1

µkI
β
t

(
u2k−1(t)

)
− Iβt g(t)− w(t) = 0, (6.1)

wherein

w(t) = u(0) + u′(0)t+
µ0u(0)

Γ(β − α+ 1)

(
tβ−α

)
, 0 < β ≤ 2, 0 < α ≤ 1, t ∈ I(t),

thus, un(t) satisfies the following equation

un(t) + µ0

(
Iβ−αt un(t)

)
−

4∑
k=1

µkI
β
t

(
u2k−1
n (t)

)
− Iβt g(t)− w(t) + En(t) = 0. (6.2)

The residual function En(t) can be obtained by using the following relation

En(t) = en[u](t) + Jβ−αn [u](t)− V βn [u2k−1](t), (6.3)

where

en[u](t) = u(t)− un(t), (6.4)

Jβ−αn [u](t) =
µ0

Γ(β − α)

∫ t

0

(t− τ)
β−α−1

(u(τ)− un(τ))dτ, (6.5)

and

V βn [u2k−1](t) =

4∑
k=1

µk
Γ(β)

∫ t

0

(t− τ)
β−1

(u2k−1(τ)− u2k−1
n (τ))dτ. (6.6)

Then, we attain

|En(t)| ≤ |en[u](t)|+
∣∣Jβ−αn [u](t)

∣∣+
∣∣V βn [u2k−1](t)

∣∣ . (6.7)

For t ∈ (ih, (i+ 1)h), i = 0, 1, 2, ..., n, using (4.10), the approximation of the absolute error using QHFs yields

|u(t)− un(t)| ≤ T |u′(jh)|
n

+O

(
1

n2

)
. (6.8)

By using (6.8), we have

|en[u](t)| ≤ Mb

n
, (6.9)

where |u′(ih)| ≤M and b = sup
{
T
n +O

(
1
n2

)}
. As n→∞, |en[u](t)| → 0. In addition, the following inequality holds

[7] ∣∣u2k−1(t)− u2k−1
n (t)

∣∣ ≤ (2k − 1)L |u(t)− un(t)| , k = 1, 2, 3, 4, (6.10)
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where L =
∣∣∣(max(u(t), un(t)))

2k−2
∣∣∣. Then, by using (6.5) and (6.8), we get

∣∣Jβ−αn [u](t)
∣∣ =

µ0

Γ(β − α)

∣∣∣∣∫ t

0

(t− τ)
β−α−1

(u(τ)− un(τ))dτ

∣∣∣∣
≤ |µ0|

Γ(β − α)

∫ t

0

(t− τ)
β−α−1 |u(τ)− un(τ)| dτ

≤ M |µ0|
2n

db, (6.11)

wherein |u′(ih)| ≤M , d = sup
t,τ∈[0,T ]

∣∣∣Γ−1(β − α)(t− τ)
β−α−1

∣∣∣, b = sup
{
T
n +O

(
1
n2

)}
. As n→∞,

∣∣Jβ−αn [u](t)
∣∣→ 0.

As well, from (6.6), (6.8) and (6.10), we have∣∣V βn [u2k−1](t)
∣∣ =

4∑
k=1

1

Γ(β)

∣∣∣∣µk ∫ t

0

(t− τ)
β−1

(u2k−1(τ)− u2k−1
n (τ))dτ

∣∣∣∣
≤

4∑
k=1

|µk|
Γ(β)

∫ t

0

(t− τ)
β−1 ∣∣(u2k−1(τ)− u2k−1

n (τ))
∣∣ dτ

≤
4∑
k=1

(2k − 1) |µk|M
2n

db ≤
4∑
k=1

(2k − 1) |µ∗|M
2n

d̄b, (6.12)

wherein

|u′(ih)| ≤M , d = sup
t,τ∈[0,T ]

∣∣∣LΓ−1(β)(t− τ)
β−1
∣∣∣, b = sup

{
T
n +O

(
1
n2

)}
, and µ∗ = Max{µk}nk=1. Therefore, as n→∞,∣∣V βn [u2k−1](t)

∣∣→ 0. As a result, from relations (6.9), (6.11), (6.12), and (6.7), it is evident that the residual function
|En(t)| tends to zero, as h→ 0, or n→∞. �

7. Numerical examples

In this section, the theoretical results of the previous sections are used for solving non-linear full fractional Duffing
equations, i.e. initial condition equation (1.1). To assess the accuracy of the scheme, let us define the absolute error
(AE) as

AE(t) = |u(t)− un(t)| , t ∈ [0, T ], (7.1)

and the logarithm of the l∞-norm error (LE) as

LE = ln (‖en‖∞) , ‖en‖∞ = sup
[ti=ih]ni=0

{|u(ti)− un(ti)|} , (7.2)

Using these definitions, the convergence order with respect to this norm will be introduced as follows,

Order = log2

(
‖en‖∞
‖e2n‖∞

)
, (7.3)

where un(t), n = T/h is the approximate solution defined in (5.6). In addition, for different values of 1 < β ≤ 2 and
0 < α ≤ 1, the resulting solutions are compared in the integer and fractional order with each other.

Example 7.1. Consider the following non-linear full fractional Duffing equation [25] :

C
0 D

β
t u(t) + µ0

C
0 D

α
t u(t) = g(t) +

4∑
k=1

µk
(
u2k−1(t)

)
, t ∈ [0, 12],

u(0) = 0.5, u′(0) = −0.5, µ0 = −2, µ1 = −1, µ2 = −8, µ3 = µ4 = 0, g(t) = e(−3t).
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Table 1. Numerical results of Example 7.1 for T = 12.

Points Exact Approximate Approximate Absolute errors Absolute errors
t solutions solutions, h = 1/16 solutions, h = 1/32 AE(t), h = 1/16 AE(t), h = 1/32

0.0 0.5000000 0.5000000 0.5000000 0.0000000 0.0000000
1.5 0.1115651 0.1104659 0.1111333 1.0992× 10−3 4.3174× 10−4

3.0 0.0248935 0.0252859 0.0251236 3.9237× 10−4 2.3004× 10−4

4.5 0.0055545 0.0059159 0.0057434 3.6142× 10−4 1.8894× 10−4

6.0 0.0012394 0.0014107 0.0013269 1.7136× 10−4 8.7504× 10−5

7.5 0.0002765 0.0003418 0.0003095 6.5292× 10−5 3.2972× 10−5

9.0 0.0000617 0.0000839 0.0000728 2.2202× 10−5 1.1119× 10−5

10.5 0.0000138 0.0000208 0.0000173 7.0378× 10−6 3.4964× 10−6

12.0 0.0000031 0.0000052 0.0000041 2.1276× 10−6 1.0478× 10−6

Table 2. Absolute errors in Example 7.1 with the present scheme and block-pulse functions wavelet
scheme.

Points QHFs, Absolute errors QHFs, Absolute errors BPFs Absolute errors
t AE(t), T = 12, h = 1/64 AE(t), T = 12, h = 1/128 [25]

0000 0000 0000 2.9762× 10−3

1.008 7.7834× 10−4 1.8912× 10−4 1.0924× 10−3

2.016 1.6993× 10−5 8.5987× 10−6 3.9923× 10−4

3.012 9.2580× 10−5 1.4390× 10−5 1.4726× 10−4

4.008 9.8168× 10−5 5.9454× 10−5 5.4206× 10−5

5.004 7.1876× 10−5 3.5439× 10−5 1.9913× 10−5

6.000 4.4182× 10−5 2.2196× 10−5 7.3004× 10−6

7.008 2.2324× 10−5 1.1684× 10−5 2.6387× 10−6

8.004 1.1337× 10−5 5.6373× 10−6 9.6327× 10−7

9.000 5.5597× 10−6 2.7794× 10−6 3.5087× 10−7

10.008 2.5186× 10−6 1.2830× 10−6 1.2596× 10−7

11.004 1.1512× 10−6 5.7251× 10−7 4.5672× 10−8

11.988 5.3294× 10−7 2.5800× 10−7 1.6717× 10−8

For β = 2 and α = 1, the exact solution is u(t) = 0.5e(−t). Approximate numerical results using different values
of (n = T/h) are shown in Tables 1-3 and Figures 2-4. Table 1 shows the approximate and exact solutions and the
absolute errors to the problem at some points. The elapsed time is 5.451 seconds for T = 12, h = 1/32. One can
compare the accuracy of the numerical results reported in [25] that uses the wavelet method of block pulse functions
(BPFs), with the results of the proposed method presented in Table 2. In accordance with the numerical results,
Table 3 demonstrates that the theoretical conclusions in section 6 are confirmed by the order of convergence. Figure 2
indicates the behavior of absolute errors for Example 7.1. Also, Figure 3 shows the logarithm of the l∞-norm errors.
As can be seen from the plot, as n increases, the error decreases. In addition, the comparison of the results obtained
for different values of β and α with the exact solutions of the equation are plotted in Figure 4. The elapsed computing
is 95.871 seconds with values of T = 12, h = 1/16.

Example 7.2. Consider the following non-linear full fractional Duffing equation [25]:

C
0 D

β
t u(t) +C

0 Dα
t u(t) = sin3(t) + cos(t)− u(t)− u3(t), t ∈ [0, 12],

u(0) = 0, u′(0) = 1.
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Table 3. Order of convergence of Example 7.1

T, h T = 12, h = 1/16 T = 12, h = 1/32 T = 12, h = 1/64 T = 12, h = 1/128
Order of 1.1408 1.0778 1.0401 −

convergence
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Figure 2. Absolute errors in Example 7.1 for h =
1/32, T = 12.
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Figure 3. The logarithm of the l∞ −
norm error in Example 7.1.
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Figure 4. Exact and numerical solutions of Example 7.1 for h =
1/8, T = 12.

With the exact solution u(t) = sin(t) for β = 2 and α = 1. Approximate numerical results using different values
of h are shown in Tables 4-5, and Figures 5-7. Table 4 indicates the approximate and exact solutions to the problem
at some points. Numerically, the convergence order is 1.0147, as shown in Table 5. As displayed in Figure 5, the
sinusoidal behavior of absolute errors in Example 7.2 is seen at h = 1/32, T = 12. Figure 6 shows that the logarithm
of the l∞-norm error decreases as n increases. Figure 7 can be used to compare the exact and approximate solutions
of the Example 7.2 with different values of alpha and beta. The elapsed computing is 98.990 seconds with values of
T = 12, h = 1/16.
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Table 4. Numerical results of Example 7.2 for T = 12.

Points Exact Approximate Approximate Absolute errors Absolute errors
t solutions solutions, h = 1/16 solutions, h = 1/32 AE(t), h = 1/16 AE(t), h = 1/32

0.0 0 0.0000000 0.0000000 0.0000000 0.0000000
1.5 0.9974950 1.0037069 1.0005409 6.2119× 10−3 3.0459× 10−3

3.0 0.1411200 0.1333742 0.1374687 7.7458× 10−3 3.6512× 10−3

4.5 −0.9775301 −0.9841707 −0.9807690 6.6406× 10−3 3.2389× 10−3

6.0 −0.2794155 −0.2719032 −0.2759009 7.5122× 10−3 3.5145× 10−3

7.5 0.9379999 0.9454781 0.9416436 7.4781× 10−3 3.6435× 10−3

9.0 0.4121185 0.4055898 0.4090723 6.5287× 10−3 3.0462× 10−3

10.5 −0.8796958 −0.8881699 −0.8838105 8.4742× 10−3 4.1146× 10−3

12.0 −0.5365729 −0.5307893 −0.5338842 5.7836× 10−3 2.6887× 10−3

Table 5. Order of convergence in Example 7.2.

T, h T = 12, h = 1/16 T = 12, h = 1/32 T = 12, h = 1/64 T = 12, h = 1/128
Order of 1.0552 1.0288 1.0147 −

convergence

Example 7.3. Consider the following strongly non-linear full fractional Duffing equation [25] :

C
0 D

β
t u(t) +C

0 Dα
t u(t) = g(t)− u(t)− u3(t)− u5(t) − u7(t), t ∈ [0, 1],

u(0) = 0, u′(0) = 0, g(t) = t21+t15+t9+t3+3t2+6t.

For β = 2 and α = 1, the exact solution is u(t) = t3. Tables 6-7 and Figures 8-10 show approximate numerical
results using different values of h. Table 6 shows the absolute errors in the problem at some grid points. Table 7
indicates the convergence order for various values of h. Figure 8 shows the behavior of absolute errors for the Example
7.3. Figure 9 shows the logarithm of the l∞-norm errors. Also, a comparison of the results for different values of β
and α with the exact solution of the equation are shown in Figure 10. The elapsed computing is 3.175 seconds with
values of T = 1, h = 1/16.

Example 7.4. As a fourth example, consider the following non-linear full fractional Duffing equation [29]:

C
0 D

2
t u(t) + µ0

C
0 D

1
t u(t) = g(t) +

4∑
k=1

µk
(
u2k−1(t)

)
, t ∈ [0, 12],

u(0) = 0.3, u′(0) = −2.3, µ0 = 0.4, µ1 = −1.1, µ2 = −1, µ3 = µ4 = 0, g(t) = 2.1 cos(1.8 t).

Due to the lack of an analytical solution, we compare the highest accuracy of approximate solutions using the
hybrid Legendre polynomials and block-pulse functions wavelet method [29], the Laplace transform decomposition
algorithms (LTDA) [33], and the Runge-Kutta method [29] with the proposed approaches. The obtained numerical
results, shown in Table 8, are consistent with the numerical results presented in other articles. The hybrid Legendre
polynomials and block-pulse functions wavelet method have two index values M and N , where T/h = M × N . A
comparison between changes in the integer and fractional orders of the equation is shown on Figure 11.

Example 7.5. Finally, we consider the following fractional oscillation equation [30]:

C
0 D

β
t u(t) + µ0

C
0 D

α
t u(t) = g(t) + µ1u(t), t ∈ [0, 1],

u(0) = 0, u′(0) = 0, µ0 = 1, µ1 = −1, g(t) = 8.
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Figure 5. Absolute errors in Example 7.2 for h =
1/32, T = 12.
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Figure 6. The logarithm of the l∞ −
norm error in Example 7.2.
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Figure 7. Exact and numerical solutions of Example 7.2 for h =
1/8, T = 12.

The problem has been solved by using hat functions (HFs) in [30], for β = 2, α = 0.5, and h = 0.001. As shown
in Table 9, we can compare our numerical results with those provided in [20, 22, 30]. By comparing the structure of
operational matrices for HFs [30] and QHFs, it can be concluded that by using HFs, the main problem is reduced
to solve n equations, while QHFs methods only need to solve n/2 equations; in the proposed algorithm, the even
coefficients ai = u(ih), i = 2, 4, ..., n, are obtained by calculating the odd coefficients ai = u(ih), i = 1, 3, ..., n − 1.
The algorithm created from QHFs is a low-cost computational method. As can be seen, the proposed method obtained
similar solutions to those obtained by other numerical methods. Table 10 displays the computing time (in seconds)
to obtain the numerical solutions for Examples 7.1–7.5 with different values of h and T = 1.

8. Conclusion

QHFs have been used to solve the strongly nonlinear full fractional Duffing equations. Quasi-hat functions and
the corresponding operational matrix are introduced. A one-step iterative numerical algorithm is created using the
fractional-order operational matrix of integration and the proposed method to produce an approximate solution. An
analysis of the method’s absolute errors and convergence is conducted. Four numerical examples are provided to show



132 J. BIAZAR AND H. EBRAHIMI

Table 6. Absolute errors at some selected points in Example 7.3 for T = 1.

Points Absolute errors Absolute errors Absolute errors
t AE(t), h = 1/32 AE(t), h = 1/64 AE(t), h = 1/128

0.000 0.0000000 0.0000000 0.0000000
0.125 1.1130× 10−4 8.6531× 10−5 5.0907× 10−5

0.250 6.5155× 10−4 3.8718× 10−4 2.0878× 10−4

0.375 1.5597× 10−3 8.7170× 10−4 4.5856× 10−4

5.000 2.7758× 10−3 1.5104× 10−3 7.8551× 10−4

0.625 4.2402× 10−3 2.2738× 10−3 1.1749× 10−3

0.750 5.8858× 10−3 3.1283× 10−3 1.6099× 10−3

0.875 7.5992× 10−3 4.0160× 10−3 2.0612× 10−3

1.000 8.9881× 10−3 4.7317× 10−3 2.4238× 10−3

Table 7. Order of convergence of Example 7.3.

T, h T = 1, h = 1/16 T = 1, h = 1/32 T = 1, h = 1/64 T = 1, h = 1/128
Order of 0.9018 0.9602 0.9828 −

convergence

Table 8. Numerical results of Example 7.4 with different methods.

Points QHFs, Approximate QHFs, Approximate LTDA Runge-Kutta Hybrid Legendre
t solutions, h = 1/64 solutions, h = 1/128 [33] [29] M = 4, N = 16, [29]

0.1 0.079653 0.082214 0.080942 0.083584 0.083592
0.2 −0.107693 −0.098764 −0.106822 −0.105092 −0.105084
0.3 −0.263951 −0.267737 −0.266147 −0.266020 −0.266012
0.4 −0.391726 −0.399292 −0.399536 −0.399978 −0.399970
0.5 −0.509322 −0.508825 −0.508129 −0.508315 −0.508308
0.6 −0.595238 −0.593869 −0.593180 −0.592891 −0.592885
0.7 −0.657697 −0.654563 −0.655381 −0.656066 −0.656062
0.8 −0.700860 −0.701437 −0.700417 −0.700677 −0.700675
0.9 −0.728874 −0.730068 −0.732272 −0.729971 −0.729971

Table 9. Numerical results of Example 7.5 with different methods for β = 2, α = 0.5.

Points QHFs, Approximate HFs, Approximate BPF ADM
t solutions, h = 1/1000 solutions, h = 1/1000, [30] [20] K = 50, [22]

0.1 0.039751 0.039750 0.039754 0.039750
0.2 0.157044 0.157040 0.157043 0.157040
0.3 0.347394 0.347370 0.347373 0.347370
0.4 0.604745 0.604690 0.604699 0.604700
0.5 0.921854 0.921770 0.921768 0.921770
0.6 1.290591 1.290500 1.290458 1.290500
0.7 1.702201 1.702000 1.702007 1.702000
0.8 2.147549 2.147300 2.147286 2.147300
0.9 2.622130 2.617000 2.616998 2.617000
1.0 3.102327 3.101900 3.101902 3.101900

HFs: Hat functions, BPF: Block-pulse functions, ADM: Adomian decomposition method.
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Figure 8. Absolute errors in Example 7.3 for h =
1/64.
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Figure 9. The logarithm of the l∞ −
norm error in Example 7.3.
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Figure 10. Exact and numerical solutions
of Example 7.3 for h = 1/16.
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Figure 11. Exact and numerical solutions
of Example 7.4 for h = 1/16.

the effectiveness of the new method. In Example 7.1, the absolute error is lower at the nodal points near the end of
the interval, as shown in Figure 2. Table 2 shows the new method offers a more accurate solution at the beginning
of the interval than the BPFs approaches. The numerical results in Example 7.2 confirm the sinusoidal behavior of
the exact solution for this equation. In Example 7.3, the error clearly increases, as the time variable approaches one
Figure 8.
In Examples 7.4 and 7.5, observing the numerical agreement of the proposed algorithm with some other numerical
results proves its efficiency. A study of the results shows that, generally, as n increases, the accuracy of the approximate
solution increases, and the absolute error decreases. One of the advantages of this proposed algorithm is that instead
of solving a system of (N + 1)× (N + 1) equations, it needs only to solve N/2 univariate nonlinear equations. Finally,
the proposed method (QHFs) can be used for a large number of similar problems such as the Bratu’s equation and
we will continue to work on developing this method.
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Table 10. Complexity of Examples 7.1-7.5, for different values of h.

Length h = 1/16 h = 1/32 h = 1/64 h = 1/128 h = 1/256

Example 7.1 1.419 3.873 11.628 40.262 147.069

Example 7.2 2.307 5.192 13.663 42.176 150.732

Example 7.3 3.175 9.216 30.586 118.940 442.113

Example 7.4 1.494 3.965 11.711 40.719 149.385

Example 7.5 1.358 3.725 10.217 32.189 113.027
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