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Abstract

This article studies a complex hyperbolic Schrodinger dynamical equation that is associated with nonlinear media
via ultra short pulse propagation. The modified simplest equation method is executed to construct complex solitary

wave and other solutions of the aforesaid equation by considering it in conformable M-fractional derivative sense.
The acquired solutions are in the form of solitary and periodic waves and rational functions. These solutions

are also described with their graphical representations by assuming appropriate values of required parameters.

Moreover, the results show that the aforesaid approach can be effective for solving such nonlinear Schrodinger
equations arising in nonlinear optics and physical sciences.
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1. Introduction

Most fundamental formations in the real world are shown by nonlinear partial differential equations (PDEs). Mod-
eling of nonlinear PDEs with their solutions contributes an essential part in the study of mathematical modeling,
mathematical physics, mathematical biology, optical fibers, fluid mechanics, heat transfer, plasma physics, and many
more [10, 21, 25, 35, 36]. A variety of smart ansatze techniques have been developed to set solutions in traveling

waveforms for nonlinear PDEs. In [15], researchers used the Exp-function and (G
′

G )-expansion scheme to gain travel-
ing wave solutions for Kadomtsev-Petviashvili equation. In [16], authors applied the first integral scheme to get exact
solutions for two dimensional GL equation. The two-dimensional fourth-order nonlinear Boussinesq equation has been
explored in [21] for its solitary solutions and stability analysis. In [17], the researchers executed the sub-equation

scheme to explore the Hirota-Satsuma coupled KdV and the Cahn-Allen equations. The authors used (G
′

G )-expansion
scheme to obtain different kinds of solutions of nonlinear lattice equations in [14]. In [22], the researchers investi-
gated the modified Kudryashov scheme to gain the solutions of Tzitzeica, DBM, and Tzitzéica–DB equations. The
exp(−ψ(ξ))-expansion and the extended simple equation methods have been discussed for the SRL wave equation in
[26]. In [37], researchers exercised the F -expansion scheme and the generalized extended tanh method to secure the
solitary wave solutions of the KP equation and its modified form equations. The extended modified rational expansion
scheme has been implemented to gain the solitary wave solutions for (2 + 1)-dim nonlinear Nizhnik-Novikov-Vesselov
equation [23]. In [42], the extended Jacobi elliptic expansion function method has been exercised to gain the opti-
cal soliton solutions of the new Hamiltonian amplitude equation. The extended simplest equation method has been
given in [29] to find the exact solutions of the perturbed Gerdjikov–Ivanov equation. With the help of symbolic
computation, the first integral method has been practiced to construct solitary and periodic wave solutions for the
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complex nonlinear evolution equations [40]. One can also study some coupled systems in [18, 24, 38] and many more
[1–3, 5–7, 11–13, 20, 28, 30–34, 39, 43, 44].

In this article, we will present a comprehensive approach named as the modified simplest equation method (mSEM)
[19, 41] for investigating new solutions for the Schrodinger dynamical equation with conformable M-fractional deriva-
tive.

The complex hyperbolic nonlinear Schrödinger dynamical equation with a truncated M-fractional as follows [41]:

iDµ,β
M,yU +

1

2
(D2µ,β

M,xU −D
2µ,β
M,t U) + |U |2U = 0, 0 < µ < 1, β > 0, (1.1)

where

Dµ,β
M,tu = lim

τ→0

u (x, tEβ(τt1−µ))− u(x, t)

τ
, 0 < µ < 1, β > 0, (1.2)

that Eβ(.) is a truncated Mittag-Leffler function with one parameter [27].
In Eq. (1.1), U(x, y, t) is the complex valued function with the dimensionless independent variable x and the

propagation coordinate y and the independent time variable t. The complex hyperbolic Schrödinger equation has
been solved to extract solutions by the extended sinh-Gorden equation expansion method [37]. The generalized
elliptic equation rational expansion scheme [9] and the classical symmetry approach [4] have been utilized to explore
the said equation. Furthermore, the multipliers method and conservation laws [8], the modified simple equation and
Exp-function methods [45] were also practiced.

1.1. Description of the mSEM. We exercise mSEM stepwise to explore the exact solutions of Eq. (1.3). Let us
have a partial differential equation with conformable M-fractional derivative read as

H(u,Dµ,β
M,tu,D

µ,β
M,xu,D

µ,β
M,yu,D

2µ,β
M,t u,D

2µ,β
M,x , . . .) = 0, (1.3)

here u(x, y, t) is a dependent function involving the highest order derivatives and nonlinear terms.
Step 1 Using the traveling wave transform in Eq. (1.3), one have

u(x, y, t) = U(η), η =
Γ(β + 1)

µ
(αxµ + ρyµ + λ tµ) , (1.4)

here α, λ, and ρ are nonzero constants. Eq. (1.4) can simplify Eq. (1.3) to produce a nonlinear ODE:

N(U,Uη, Uηη, ...) = 0, (1.5)

where U = dU
dη , Uηη = dU2

dη2 , ...

Step 2 Taking the solution of Eq.(1.5) in the form of finite series as

U(η) =

m∑
i=0

diϕ
i(η), (1.6)

where di(i = 0, 1, 2, ...,m) are constants to be found later and dm 6= 0. The Riccati equation is used as the simplest
equation for the function ϕ(η) to be satisfied.

ϕ′(η) = ϕ2(η) + ε, (1.7)

here ε is a constant and the prime represent derivative w.r.t η. A family of solutions to Eq. (1.7) are procured
depending upon the variations of ε:
When ε < 0, (Solitary wave solutions)

ϕ(η) = −
√
−ε tanh

√
−ε η, (1.8)

ϕ(η) = −
√
−ε coth

√
−ε η, (1.9)

ϕ(η) =
√
−ε(− tanh(2

√
−ε η)± i sech(2

√
−ε η)), (1.10)



46 A. ZAFAR, W. RAZZAQ, H. REZAZADEH, AND M. ESLAMI

ϕ(η) =
√
−ε
(
− coth

(
2
√
−ε η

)
± csch

(
2
√
−ε η

))
, (1.11)

ϕ(η) = −
√
−ε
2

(
tanh

(√
−ε
2

η

)
+ coth

(√
−ε
2

η

))
. (1.12)

When ε > 0, (Periodic function solutions)

ϕ(η) =
√
ε tan

√
ε η, (1.13)

ϕ(η) = −
√
ε cot

√
ε η, (1.14)

ϕ(η) =
√
ε
(
tan

(
2
√
ε η
)
± sec

(
2
√
ε η
))
, (1.15)

ϕ(η) =
√
ε
(
− cot

(
2
√
ε η
)
± csc

(
2
√
ε η
))
, (1.16)

ϕ(η) =

√
ε

2

(
tan

(√
ε

2
η

)
− cot

(√
ε

2
η

))
. (1.17)

When ε = 0, (Rational function soltuion)

ϕ(η) = −1

η
. (1.18)

Step 3
By inserting Eq. (1.6) in Eq. (1.5) with Eq. (1.7) and collect all the coefficients of function ϕi equal to zero for
determining the values of di, α, ρ, λ.
Step 4
Replacing the determined values of di, α, ρ, and λ in Eq. (1.6) and using the appropriate solutions of Eq. (1.7), we
acquire the required wave solutions of Eq. (1.3).

2. Complex exact solution of Eq. (1.1)

We now apply the modified SE method to explore Eq. (1.1) by using the following transformations

u(x, y, t) = U(η)eiϑ, η = Γ(β+1)
µ (xµ + ayµ − ε tµ) ,

ϑ = Γ(β+1)
µ (ϑ1x

µ + ϑ2y
µ + ϑ3 t

µ) + ϑ4,

(2.1)

where ϑ1, ϑ2, ϑ3, ϑ4, a, ε are non-variables and a plays the role of connector between two stable states of the solution.
Moreover, ε and ϑ1 are the speed and the frequency whereas ϑ2 and ϑ3 represent the wave number and the phase.

Then, Eq. (1.1) is converted to a nonlinear ODE by using (1.4), and secure the following real and imaginary parts:

(ε2 − 1)U ′′ − 2U3 + (ϑ2
1 + 2ϑ2 − ϑ2

3)U = 0, (2.2)

a = −(ϑ2 + ϑ3ε).
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Putting Eq. (1.6) into Eq. (2.2) and one can acquires the following system of algebraic equations.

d0ϑ
2
1 − d0ϑ

2
3 + 2d0ϑ2 − 2d3

0 = 0,

2d1ε
2ε− 2d1ε+ d1ϑ

2
1 − d1ϑ

2
3 + 2d1ϑ2 − 6d2

0d1 = 0,

−6d0d
2
1 = 0,

2d1ε
2 − 2d3

1 − 2d1 = 0.

On solving the above system for d0, d1, ε by utilizing Mathematica, the following results are produced:
Case 1:

d0 = 0, d1 = −
√
−ϑ2

1 + ϑ2
3 − 2ϑ2

2ε
, ε = ∓

√
2ε− ϑ2

1 + ϑ2
3 − 2ϑ2

2ε
.

When ε < 0, we arrive at the solitary wave solutions

u(x, y, t) =

√
ϑ2
1−ϑ2

3+2ϑ2

2 × exp
[
i(Γ(β+1)

µ (ϑ1x
µ + ϑ2y

µ + ϑ3 t
µ) + ϑ4)

]
× tanh

(√
−ε
(

Γ(β+1)
µ (xµ + ayµ − ε tµ)

))
,

(2.3)

or

u(x, y, t) =

√
ϑ2
1−ϑ2

3+2ϑ2

2 × exp
[
i(Γ(β+1)

µ (ϑ1x
µ + ϑ2y

µ + ϑ3 t
µ) + ϑ4)

]
× coth

(√
−ε
(

Γ(β+1)
µ (xµ + ayµ − ε tµ)

))
,

(2.4)

or

u(x, y, t) = −
√

ϑ2
1−ϑ2

3+2ϑ2

2 × exp
[
i(Γ(β+1)

µ (ϑ1x
µ + ϑ2y

µ + ϑ3 t
µ) + ϑ4)

]
×
(
− tanh

(
2
√
−ε(Γ(β+1)

µ (xµ + ayµ − ε tµ)
)
± i sech

(
2
√
−ε(Γ(β+1)

µ (xµ + ayµ − ε tµ)
))

,
(2.5)

or

u(x, y, t) = −
√

ϑ2
1−ϑ2

3+2ϑ2

2 × exp
[
i(Γ(β+1)

µ (ϑ1x
µ + ϑ2y

µ + ϑ3 t
µ) + ϑ4)

]
×
(
− coth

(
2
√
−ε(Γ(β+1)

µ (xµ + ayµ − ε tµ)
)
± csch

(
2
√
−ε(Γ(β+1)

µ (xµ + ayµ − ε tµ)
))

,
(2.6)

or

u(x, y, t) =

√
−ϑ

2
1−ϑ2

3+2ϑ2

2 × exp
[
i(Γ(β+1)

µ (ϑ1x
µ + ϑ2y

µ + ϑ3 t
µ) + ϑ4)

]
1
2

(
tanh

(√
−ε
2 (Γ(β+1)

µ (xµ + ayµ − ε tµ)
)

+ coth
(√
−ε
2 (Γ(β+1)

µ (xµ + ayµ − ε tµ)
))

.
(2.7)

When ε > 0, we acquire the periodic function solutions as

u(x, y, t) = −
√
−ϑ2

1+ϑ2
3−2ϑ2

2 × exp
[
i(Γ(β+1)

µ (ϑ1x
µ + ϑ2y

µ + ϑ3 t
µ) + ϑ4)

]
× tan

(√
ε
(

Γ(β+1)
µ (xµ + ayµ − ε tµ)

))
,

(2.8)

or

u(x, y, t) =

√
−ϑ2

1+ϑ2
3−2ϑ2

2 × exp
[
i(Γ(β+1)

µ (ϑ1x
µ + ϑ2y

µ + ϑ3 t
µ) + ϑ4)

]
× cot

(√
ε
(

Γ(β+1)
µ (xµ + ayµ − ε tµ)

))
,

(2.9)

or

u(x, y, t) = −
√
−ϑ2

1+ϑ2
3−2ϑ2

2 × exp
[
i(Γ(β+1)

µ (ϑ1x
µ + ϑ2y

µ + ϑ3 t
µ) + ϑ4)

]
×
(

tan
(

2
√
−ε(Γ(β+1)

µ (xµ + ayµ − ε tµ)
)
± sec

(
2
√
ε(Γ(β+1)

µ (xµ + ayµ − ε tµ)
))

,
(2.10)
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or

u(x, y, t) = −
√
−ϑ2

1+ϑ2
3−2ϑ2

2 × exp
[
i(Γ(β+1)

µ (ϑ1x
µ + ϑ2y

µ + ϑ3 t
µ) + ϑ4)

]
×
(
− cot

(
2
√
ε(Γ(β+1)

µ (xµ + ayµ − ε tµ)
)
± csc

(
2
√
ε(Γ(β+1)

µ (xµ + ayµ − ε tµ)
))

,
(2.11)

or

u(x, y, t) = −
√
−ϑ2

1+ϑ2
3−2ϑ2

2 × exp
[
i(Γ(β+1)

µ (ϑ1x
µ + ϑ2y

µ + ϑ3 t
µ) + ϑ4)

]
× 1

2

(
tan

(√
ε

2 (Γ(β+1)
µ (xµ + ayµ − ε tµ)

)
− cot

(√
ε

2 (Γ(β+1)
µ (xµ + ayµ − ε tµ)

))
,

(2.12)

where a = −(ϑ2 + ϑ3ε).
Case 2:

d0 = 0, d1 =

√
−ϑ2

1 + ϑ2
3 − 2ϑ2

2ε
, ε = ∓

√
2ε− ϑ2

1 + ϑ2
3 − 2ϑ2

2ε
.

When ε < 0, we have the solitary wave solutions as

u(x, y, t) = −
√

ϑ2
1−ϑ2

3+2ϑ2

2 × exp
[
i(Γ(β+1)

µ (ϑ1x
µ + ϑ2y

µ + ϑ3 t
µ) + ϑ4)

]
× tanh

(√
−ε
(

Γ(β+1)
µ (xµ + ayµ − ε tµ)

))
,

(2.13)

or

u(x, y, t) = −
√

ϑ2
1−ϑ2

3+2ϑ2

2 × exp
[
i(Γ(β+1)

µ (ϑ1x
µ + ϑ2y

µ + ϑ3 t
µ) + ϑ4)

]
× coth

(√
−ε
(

Γ(β+1)
µ (xµ + ayµ − ε tµ)

))
,

(2.14)

or

u(x, y, t) =

√
ϑ2
1−ϑ2

3+2ϑ2

2 × exp
[
i(Γ(β+1)

µ (ϑ1x
µ + ϑ2y

µ + ϑ3 t
µ) + ϑ4)

]
×
(
− tanh

(
2
√
−ε(Γ(β+1)

µ (xµ + ayµ − ε tµ)
)
± i sech

(
2
√
−ε(Γ(β+1)

µ (xµ + ayµ − ε tµ)
))

,
(2.15)

or

u(x, y, t) =

√
ϑ2
1−ϑ2

3+2ϑ2

2 × exp
[
i(Γ(β+1)

µ (ϑ1x
µ + ϑ2y

µ + ϑ3 t
µ) + ϑ4)

]
×
(
− cot

(
2
√
ε(Γ(β+1)

µ (xµ + ayµ − ε tµ)
)
± csc

(
2
√
ε(Γ(β+1)

µ (xµ + ayµ − ε tµ)
))

,
(2.16)

or

u(x, y, t) = −
√

ϑ2
1−ϑ2

3+2ϑ2

2 × exp
[
i(Γ(β+1)

µ (ϑ1x
µ + ϑ2y

µ + ϑ3 t
µ) + ϑ4)

]
× 1

2

(
tan

(√
ε

2 (Γ(β+1)
µ (xµ + ayµ − ε tµ)

)
− cot

(√
ε

2 (Γ(β+1)
µ (xµ + ayµ − ε tµ)

))
.

(2.17)

When ε > 0, we procure the periodic function solutions as

u(x, y, t) =

√
−ϑ2

1+ϑ2
3−2ϑ2

2 × exp
[
i(Γ(β+1)

µ (ϑ1x
µ + ϑ2y

µ + ϑ3 t
µ) + ϑ4)

]
× tan

(√
ε
(

Γ(β+1)
µ (xµ + ayµ − ε tµ)

))
,

(2.18)

or

u(x, y, t) = −
√
−ϑ2

1+ϑ2
3−2ϑ2

2 × exp
[
i(Γ(β+1)

µ (ϑ1x
µ + ϑ2y

µ + ϑ3 t
µ) + ϑ4)

]
× cot

(√
ε
(

Γ(β+1)
µ (xµ + ayµ − ε tµ)

))
,

(2.19)

or

u(x, y, t) =

√
−ϑ2

1+ϑ2
3−2ϑ2

2 × exp
[
i(Γ(β+1)

µ (ϑ1x
µ + ϑ2y

µ + ϑ3 t
µ) + ϑ4)

]
×
(

tan
(

2
√
−ε(Γ(β+1)

µ (xµ + ayµ − ε tµ)
)
± sec

(
2
√
−ε(Γ(β+1)

µ (xµ + ayµ − ε tµ)
))

,
(2.20)
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Figure 1. 3D and 2D wave profiles of solution (2.3), are displayed corresponding to µ = 0.75 and
t = 1 = y.

or

u(x, y, t) =

√
−ϑ2

1+ϑ2
3−2ϑ2

2 × exp
[
i(Γ(β+1)

µ (ϑ1x
µ + ϑ2y

µ + ϑ3 t
µ) + ϑ4)

]
×
(
− cot

(
2
√
ε(Γ(β+1)

µ (xµ + ayµ − ε tµ)
)
± csc

(
2
√
ε(Γ(β+1)

µ (xµ + ayµ − ε tµ)
))

,
(2.21)

or

u(x, y, t) =

√
−ϑ2

1+ϑ2
3−2ϑ2

2 × exp
[
i(Γ(β+1)

µ (ϑ1x
µ + ϑ2y

µ + ϑ3 t
µ) + ϑ4)

]
× 1

2

(
tan

(√
ε

2 (Γ(β+1)
µ (xµ + ayµ − ε tµ)

)
− cot

(√
ε

2 (Γ(β+1)
µ (xµ + ayµ − ε tµ)

))
,

(2.22)

where a = −(ϑ2 + ϑ3ε).

3. Physical explanation

The dynamics of obtained solutions are presented here via 2D and 3D graphics in 1-4. For the sake of simplicity
we take ϑ1 = 0.3 = ϑ3, ϑ2 = 0.4, ϑ4 = 0.2 and β = 1. Furthermore, the obtained solutions given by Eqs. (2.18),
(2.19), (2.20), and (2.21) are presented here via 2D and 3D graphics 5-6. For the sake of simplicity we take y =
1, ϑ1 = 1 = ϑ3, ϑ2 = 1 and ϑ4 = 0.2. We now take t = 1 = β, ϑ1 = 0.2 = ϑ3, ϑ2 = 0.3 and ϑ4 = 0.2.

4. Conclusion

The modified simplest equation method has been executed to construct a new complex solitary wave solutions for
a complex hyperbolic Schrodinger dynamical equation. We have discussed the aforesaid equation in the sense of a
conformable M-fractional derivative operator. Such nonlinear Schrodinger equations have an important role in physics
and many other nonlinear sciences. The acquired solutions might have a significant role in the above-mentioned
areas as they have the complex solitary wave, periodic, and rational functions forms. These solutions have also been
presented with their graphical demonstrations by choosing suitable values of involved parameters.
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Figure 2. 3D and 2D wave profiles of solution (2.4), are displayed corresponding to µ = 0.75 and
t = 1 = y

Figure 3. 3D wave profiles of solution (2.5), are displayed corresponding to µ = 0.75, 1 and t = 1.
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Figure 4. 3D wave profiles of solution (2.6), are displayed corresponding to µ = 0.75, 1 and t = 1.

Figure 5. 2D and 3D wave profiles of Eq. (2.18), are displayed corresponding to µ = 0.75, 1, β = 1
and ε = 1.
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Figure 6. 2D and 3D wave profiles of Eq. (2.19), are displayed corresponding to µ = 0.75, 1, β = 1
and ε = 1.

Figure 7. Two different 3D wave profiles of Eq. (2.20), are displayed corresponding to µ = 0.75, 1
and ε = 1.
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Figure 8. Two different 3D wave profiles of Eq. (2.21), are given corresponding to µ = 0.75, 1 and ε = 1.
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