- [1] S. Ahmad, S. Akhter, M. I. Shahid, K. Ali, M. Akhtar, and M. Ashraf, Novel thermal aspects of hybrid nanofluid flow comprising of manganese zinc ferrite MnZnFe2O4, nickel zinc ferrite NiZnFe2O4 and motile microorganisms, Ain Shams Eng. J., 13(5) (2022).
- [2] S. Ahmad, J. Younis, K. Ali, M. Rizwan, M. Ashraf and M. A. Abd El Salam, Impact of swimming gyrotactic mi- croorganisms and viscous dissipation on nanoparticles flow through a permeable medium- a numerical assessment, J. Nanomater., (2022).
- [3] S. Akhter, S. Ahmad, and M. Ashraf, Cumulative impact of viscous dissipation and heat generation on MHD Darcy-Forchheimer flow between two stretchable disks: Quasi linearization technique, J. Sci. Arts., 22(1) (2022), 219–232.
- [4] K. Ali, S. Ahmad, O. Baluch, W. Jamshed, M. R. Eid, and A. A. Pasha, Numerical study of magnetic field interaction with fully developed flow in a vertical duct, Alex. Eng. J., 61(12) (2022), 11351–11363.
- [5] V. Ananthaswamy, C. Sumathi, and M. Subha, Mathematical analysis of variable viscosity fluid flow through a channel and Homotopy Analysis Method, Int. J. Mod. Math. Sci., 14(3) (2016), 296-316.
- [6] V. Ananthaswamy, M. Subha, and A. Mohammed Fathima, Approximate analytical expression of non-linear boundary value problem for a boundary layer flow using Homotopy Analysis Method, Madridge J. Bioinform. Syst. Biol., 1(2) (2019), 34–39.
- [7] V. Ananthaswamy, T. Nithya, and V. K. Santhi, Mathematical analysis of the Navier- stokes equations for steady Magnetohydrodynamic flow, J. Inf. Comput. Sci., 10(3) (2020), 989–1003.
- [8] M. Batool, S. Akhter, S. Ahmad, M. Ashraf, and K. Ali, Impact of viscous dissipation on MHD Darcy-Forchheimer nanoliquid flow comprising gyrotactic microorganisms past a non-linear extending surface, Sci. Iran., (2022).
- [9] J. Chitra, V. Ananthaswamy, S. Sivasankari, and Seenith Sivasaundaram, A new approximate analytical method (ASM) for solving non-linear boundary value problem in heat transfer through porous fin, Math. Eng. Sci. Aerosp. (MESA), 14(1) (2023), 53–69.
- [10] S. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles developments and application of non- Newtonian flows, ASME J. Heat Transfer, 66 (1997), 99–105.
- [11] P. Forchheimer, Wasserbewegung durch Boden, Zeitschrift des Vereins Deutscher Ingenieure, 45 (1901), 1782–1788.
- [12] N. V. Ganesh, A. K. A. Hakeem, and B. Ganga, Darcy-Forchheimer flow of hydro magnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipation effects, Ain Shams Eng. J., 9 (2018), 939–951.
- [13] T. Hayat, A. Aziz, T. Muhammad, and A. Alsaedi, Darcy-Forchheimer three-dimensional flow of nanofluid over a convectively non-linear stretching surface, Commun. Theor. Phys., 68(3) (2017), 387.
- [14] T. Hayat, F. Haider, and T. Muhammad, Numerical study for Darcy-Forchheimer flow of nanofluid due to an exponentially stretching curved surface, Results Phys., 8 (2018), 764–771.
- [15] A. Khan, Z. Shah, S. Islam, A. Dawar, E. Bonyah, H. Ullah, and A. Khan, Darcy-Forchheimer flow of MHD CNTs nanofluid radiative thermal behavior and convective non-uniform heat source/sink in the rotating frame with microstructure and inertial characteristics, AIP Adv., 8 (2018).
- [16] S. J. Liao, Proposed homotopy analysis techniques for the solution of non-linear Problems, Ph.D. dissertation, Shanghai Jiao Tong University, Shanghai (1992).
- [17] S. J. Liao, An approximate solution technique which does not depend upon small parameters: a special example, Int. J. Non-Linear Mech., 30 (1995), 371–380.
- [18] S. J. Liao, A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate, J. Fluid Mech., 385 (1999), 101–128.
- [19] S. J. Liao, An explicit totally analytic approximation of Blasius viscous flow problem, Int. J. Non-Linear Mech., 385 (1999), 385.
- [20] S. J. Liao, A Analytic solutions of the temperature distribution in blasius viscous flow problems, J. Fluid Mech., 453 (2019), 411–425.
- [21] T. Muhammad, A. Alsaedi, S. A. Shehzad and T. Hayat, A revised model for Darcy-Forchheimer flow of Maxwell nanofluid subject to convective boundary condition, Chinese J. Phys., 55 (2017), 963–976.
- [22] M. Muskat, The flow of homogenous fluids through porous media, MI: Edwards, (1995).
- [23] S. Nasir, Z. Shah, S. Islam, E. Bonyah and T. Gul, Darcy-Forchheimer nanofluid thin film flow of SWCNTs and heat transfer analysis over an unsteady stretching sheet, AIP Adv., 9 (2019).
- [24] G. Rasool, A. Shafiq, C. M. Khalique, and T. Zhang, MHD Darcy-Forchheimer nanofluid flow over a non-linear stretching sheet, Phys. Scr., 94(10) (2014).
- [25] G. Rasool, T. Zhang, A. J. Chamka, A. Shafiq, I. Tlili, and G. Shahzadi, Entropy generation and consequences of binary chemical reaction on MHD Darcy-Forchheimer Williamson nanofluid flow over non-linearly stretching surface, Entropy, 22 (2020).
- [26] M. A. Sadiq and T. Hayat, Darcy-Forchheimer flow of magneto Maxwell liquid bounded by convectively heated sheet, Results Phys., 6 (2016), 884–890.
- [27] R. S. Saif, T. Hayat, R. Ellahi, T. Muhammad, and A. Alsaedi, Darcy-Forchheimer flow of nanofluid due to a curved stretching surface, Int. J. Numer. Methods Heat Fluid Flow, 29 (2019), 2–20.
- [28] T. Sajid, M. Sagheer, S. Hussain, and M. Bilal, Darcy-Forchheimer flow of Maxwell nanofluid with non-linear thermal radiation and activation energy, AIP Adv, 8 (2018).
- [29] M. A. Seddeek, Influence of viscous dissipation and thermophoresis on Darcy- Forchheimer mixed convection fluid in a saturated porous media, J. Colloid. Interface Sci., 293 (2006), 137–142.
- [30] A. Shafiq, G. Rasool, and C. M. Khalique, Significance of thermal slip and convective boundary conditions in three-dimensional rotating Darcy-Forchheimer nanofluid flow, Symmetry, 12 (2020).
- [31] A. Shahid, Z. Zhou, M. Hassan, et al., Computational study of magnetized blood flow in the presence of gyrotactic microorganisms propelled through a permeable capillary in a stretching motion, Int. J. Multiscale Comput. Eng., 16 (2018), 409–426.
- [32] M. I. Shahid, S. Ahmad, and M. Ashraf, Simulation analysis of mass and heat transfer attributes in nanoparticles flow subject to Darcy-Forchheimer medium, Sci. Iran., (2022).
- [33] S. Sivasankari, V. Anantahswamy, and S. Sivasundaram, A new approximate analytical method for solving some non-linear initial value problems in physical sciences, Math. Eng. Sci. Aerosp. (MESA), 14(1) (2023), 145–162.
- [34] M. Sohail and R. Naz, On the onset of entropy generation for a nanofluid with thermal radiation and gyrotactic microorganisms through three-dimensional flows, Phys. Scr., 95 (2020).
- [35] O. Turk and M. T. Sezin, TFEM solution to natural convection flow of a micro polar nanofluid in the presence of a magnetic field, Meccanica., 52 (2017), 889–901.
- [36] H. Waqas, S. U. Khan, M. Imran, and M. Bhatti, Thermally developed Falkner-Skan bioconvection flow of a magnetized nanofluid in the presence of a motile gyrotactic microorganism: Buongiorno’s nanofluid model, Phys. Scr., 94 (2019).
- [37] M. Zakaullah, S. S. Capinnao, and D. Baleanu, A numerical simulation for Darcy-Forchheimer flow of nanofluid by a rotating disk with partial slip effects, Front. Phys., 7 (2020).
|