تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,486,646 |
تعداد دریافت فایل اصل مقاله | 15,213,705 |
تأثیر پیشتیمار امواج فراصوت بر روی سینتیک خشککردن، نفوذ رطوبت مؤثر و رنگ برگۀ زردآلو | ||
مکانیزاسیون کشاورزی | ||
دوره 7، شماره 4، دی 1401، صفحه 43-52 اصل مقاله (888.91 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jam.2023.16164 | ||
نویسندگان | ||
ابوالفضل آخوندزاده یامچی1؛ عادل حسین پور* 2؛ مازیار فیض اله زاده1 | ||
1گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
2دانشگاه تبریز | ||
چکیده | ||
ایران از نظر تولید زردآلو در جهان، مقام دوم را دارد و مطالعه روشهای خشککردن این میوه برای کاهش فسادپذیری ضروری میباشد. در این پژوهش تأثیر پیشتیمار فراصوت و ضخامت برگههای زردآلو روی سینتیک خشکشدن زردآلو در یک خشککن هوای گرم بررسی شد. تاثیر پیشتیمار فراصوت در سه سطح 10، 20 و 30 دقیقه و ضخامت در سه سطح 3، 5 و 10 میلیمتر بر زمان خشکشدن، مدلسازی، ضریب پخش رطوبت و تغییرات کلی رنگ در طی فرآیند خشکشدن زردآلو بررسی گردید. نتایج نشانداد افزایش مدت زمان اعمال پیشتیمار و کاهش ضخامت نمونه موجب افزایش سرعت خشکشدن و کاهش مدت زمان آن میگردد. بیشترین زمان خشکشدن مربوط به نمونه با ضخامت 10 میلیمتر شاهد با 300 دقیقه و کمترین زمان خشکشدن متعلق به نمونه با ضخامت 3 میلیمتر تحت پیشتیمار فراصوت 30 دقیقه با 40 دقیقه بود. مدل میدلی بهترین برازش را با دادههای تجربی داشت. نمونه دارای ضخامت 10 میلیمتر پیش تیمار فراصوت شده به مدت 30 دقیقه و نمونه 3 میلیمتر شاهد بهترتیب با 7-10×62/2 و 8-10×99/2 مترمربع بر ثانیه دارای بیشترین و کمترین ضریب پخش رطوبت بودند. امواج فراصوت روی تغییر رنگ نمونهها بهدلیل ماهیت فیزیکی این امواج تأثیر نداشته و اختلاف شاخص تغییرات کلی رنگ (ΔΕ) با نمونه شاهد ناشی از انجام واکنشهای شیمیایی رنگزا مثل واکنش میلارد بین قندها و پروتئینها و تشکیل ملانوئیدینها است. | ||
کلیدواژهها | ||
خشککردن؛ رنگ؛ زردآلو؛ ضریب پخش رطوبت؛ فراصوت | ||
مراجع | ||
Akanbi, C. T., & Oludemi, F. O. (2004). Effect of processing and packaging on the lycopene content of tomato products. International Journal of Food Properties, 7(1), 139–152. https://doi.org/10.1081/JFP-120024173 Akhoundzadeh yamchi, A., Yeganeh, R., & Kouchakzadeh, A. (2019). The Effect of Ultrasound Pretreatment On Qualitative Characteristics of Peach Thin Slices (Alberta Varety). JOURNAL OF RESEARCHES IN MECHANICS OF AGRICULTURAL MACHINERY, 8(14), 37–47. Akhoundzadeh Yamchi, A., Yeganeh, R., & Kouchakzadeh, A. (2022). Effect of ultrasonic pretreatment on drying kinetics and physio-mechanical characteristics of peach slices. Journal of Food Process Engineering, 45(8), 1–12. https://doi.org/10.1111/jfpe.14053 Alizehi, M. H., Niakousari, M., Fazaeli, M., & Iraji, M. (2020). Modeling of vacuum- and ultrasound-assisted osmodehydration of carrot cubes followed by combined infrared and spouted bed drying using artificial neural network and regression models. Journal of Food Process Engineering, 43(12), 1–16. https://doi.org/10.1111/jfpe.13563 Amami, E., Khezami, W., Mezrigui, S., Badwaik, L. S., Bejar, A. K., Perez, C. T., & Kechaou, N. (2017). Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry. Ultrasonics Sonochemistry, 36, 286–300. https://doi.org/10.1016/j.ultsonch.2016.12.007 Arepally, D., Ravula, S., Malik, G., & Kamidi, V. (2017). Mathematical Modelling, Energy and Exergy Analysis of Tomato Slices in a Mixed Mode Natural Convection Solar Dryer. Chemical Science International Journal, 20(4), 1–11. https://doi.org/10.9734/csji/2017/34878 Azoubel, P. M., Baima, M. do A. M., Amorim, M. da R., & Oliveira, S. S. B. (2010). Effect of ultrasound on banana cv Pacovan drying kinetics. Journal of Food Engineering, 97(2), 194–198. https://doi.org/10.1016/j.jfoodeng.2009.10.009 Bromberger Soquetta, M., Schmaltz, S., Wesz Righes, F., Salvalaggio, R., & de Marsillac Terra, L. (2018). Effects of pretreatment ultrasound bath and ultrasonic probe, in osmotic dehydration, in the kinetics of oven drying and the physicochemical properties of beet snacks. Journal of Food Processing and Preservation, 42(1), 1–9. https://doi.org/10.1111/jfpp.13393 Bruin, S., & Luyben, K. (1980). Drying of food materials. In Advances in Drying (pp. 155–215). McGraw-Hill Co,US. Cárcel, J. A., Benedito, J., Rosselló, C., & Mulet, A. (2007). Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 78(2), 472–479. https://doi.org/10.1016/j.jfoodeng.2005.10.018 Coşkun, S., Doymaz, İ., Tunçkal, C., & Erdoğan, S. (2017). Investigation of drying kinetics of tomato slices dried by using a closed loop heat pump dryer. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 53(6), 1863–1871. https://doi.org/10.1007/s00231-016-1946-7 de la Fuente-Blanco, S., Riera-Franco de Sarabia, E., Acosta-Aparicio, V. M., Blanco-Blanco, A., & Gallego-Juárez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics, 44(SUPPL.). https://doi.org/10.1016/j.ultras.2006.05.181 Delfiya, D. S. A., Prashob, K., Murali, S., Alfiya, P. V., Samuel, M. P., & Pandiselvam, R. (2021). Drying kinetics of food materials in infrared radiation drying: A review. Journal of Food Process Engineering, May, 1–19. https://doi.org/10.1111/jfpe.13810 Doymaz, İ. (2017). Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 53(1), 25–35. https://doi.org/10.1007/s00231-016-1791-8 Erdem, T., Ozluoymak, O. B., & Kizildag, N. (2018). Color Change Analysis of Dried Orange Slices During Hot Air Color Change Analysis of Dried Orange Slices. Fresenius Enviromental Bulletin, 27(9), 6064–6072. Fernandes, F. A. N., Braga, T. R., Silva, E. O., & Rodrigues, S. (2019). Use of ultrasound for dehydration of mangoes (Mangifera indica L.): kinetic modeling of ultrasound-assisted osmotic dehydration and convective air-drying. Journal of Food Science and Technology, 56(4), 1793–1800. https://doi.org/10.1007/s13197-019-03622-y Fernandes, F. A. N., Gallão, M. I., & Rodrigues, S. (2008). Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration. LWT - Food Science and Technology, 41(4), 604–610. https://doi.org/10.1016/j.lwt.2007.05.007 Gallego-Juárez, J. A., Riera, E., de la Fuente Blanco, S., Rodríguez-Corral, G., Acosta-Aparicio, V. M., & Blanco, A. (2007). Application of high-power ultrasound for dehydration of vegetables: Processes and devices. Drying Technology, 25(11), 1893–1901. https://doi.org/10.1080/07373930701677371 Hassan-Beygi, S. R., Ghaebi, S. M., & Arabhosseini, A. (2009). Some physico-mechanical properties of apricot fruit, pit and kernel of ordubad variety. Agricultural Engineering International: The CIGR Ejournal, XI(1459), 1–16. http://www.cigrjournal.org/index.php.Ejournal Jambrak, A. R., Mason, T. J., Paniwnyk, L., & Lelas, V. (2007). Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering, 81(1), 88–97. https://doi.org/10.1016/j.jfoodeng.2006.10.009 Kashaninejad, M., & Tabil, L. G. (2009). Resistance of bulk pistachio nuts (Ohadi variety) to airflow. Journal of Food Engineering, 90(1), 104–109. https://doi.org/10.1016/j.jfoodeng.2008.06.007 Kayacan, S., Sagdic, O., & Doymaz, I. (2018). Effects of hot-air and vacuum drying on drying kinetics, bioactive compounds and color of bee pollen. Journal of Food Measurement and Characterization, 12(2), 1274–1283. https://doi.org/10.1007/s11694-018-9741-4 Kowalski, S. J., & Pawłowski, A. (2015). Intensification of apple drying due to ultrasound enhancement. Journal of Food Engineering, 156, 1–9. https://doi.org/10.1016/j.jfoodeng.2015.01.023 Krokida, M. K., Kiranoudis, C. T., Maroulis, Z. B., & Marinos-Kouris, D. (2000). Effect of pretreatment on color of dehydrated products. Drying Technology, 18(6), 1239–1250. https://doi.org/10.1080/07373930008917774 Mohammadi, I., Tabatabaekoloor, R., & Motevali, A. (2019). Effect of air recirculation and heat pump on mass transfer and energy parameters in drying of kiwifruit slices. Energy, 170, 149–158. https://doi.org/10.1016/j.energy.2018.12.099 Şen, S., & Aydin, F. (2020). Experimental investigation of drying kinetics of apple with hot air, microwave and ultrasonic power. Sadhana - Academy Proceedings in Engineering Sciences, 45(1). https://doi.org/10.1007/s12046-020-01326-0 Simal, S., Benedito, J., Sánchez, E. S., & Rosselló, C. (1998). Use of ultrasound to increase mass transport rates during osmotic dehydration. Journal of Food Engineering, 36(3), 323–336. https://doi.org/10.1016/S0260-8774(98)00053-3 Souza da Silva, E., Rupert Brandão, S. C., Lopes da Silva, A., Fernandes da Silva, J. H., Duarte Coêlho, A. C., & Azoubel, P. M. (2019). Ultrasound-assisted vacuum drying of nectarine. Journal of Food Engineering, 246(September 2018), 119–124. https://doi.org/10.1016/j.jfoodeng.2018.11.013 Tayyab Rashid, M., Liu, K., Ahmed Jatoi, M., Safdar, B., Lv, D., & Wei, D. (2022). Developing ultrasound-assisted hot-air and infrared drying technology for sweet potatoes. Ultrasonics Sonochemistry, 86(May), 106047. https://doi.org/10.1016/j.ultsonch.2022.106047 Tkalčič, M., & Tasič, J. F. (2003). Colour spaces - Perceptual, historical and applicational background. IEEE Region 8 EUROCON 2003: Computer as a Tool - Proceedings, A, 304–308. https://doi.org/10.1109/EURCON.2003.1248032 Yao, Y. (2016). Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration. Ultrasonics Sonochemistry, 31, 512–531. https://doi.org/10.1016/j.ultsonch.2016.01.039 Yazdanpanah Gangachin, M., & Ziaiifar, A. (2014). Evaluation of potato chips color using image processing. Journal of Food Industry Research, 24(2), 239–247. Zannou, O., Pashazadeh, H., Ghellam, M., Hassan, A. M. A., & Koca, I. (2021). Optimization of drying temperature for the assessment of functional and physical characteristics of autumn olive berries. In Journal of Food Processing and Preservation (Vol. 45, Issue 9). https://doi.org/10.1111/jfpp.15658 Zhang, J., Li, M., Ding, Z., Wang, C., & Cheng, J. (2021). Evaluation of ultrasound-assisted microwave hot air convective drying Chinese hickory—Drying kinetics and product’s quality properties. Journal of Food Process Engineering, 44(11), 1–11. https://doi.org/10.1111/jfpe.13842 Zhao, Y., Zhu, H., Xu, J., Zhuang, W., Zheng, B., Lo, Y. M., Huang, Z., & Tian, Y. (2021). Microwave vacuum drying of lotus (Nelumbo nucifera Gaertn.) seeds: Effects of ultrasonic pretreatment on color, antioxidant activity, and rehydration capacity. Lwt, 149, 111603. https://doi.org/10.1016/j.lwt.2021.111603 Zhu, A. (2018). The convective hot air drying of Lactuca sativa slices. International Journal of Green Energy, 15(3), 201–207. https://doi.org/10.1080/15435075.2018.1434523 Zielinska, M., & Markowski, M. (2018). Effect of microwave-vacuum, ultrasonication, and freezing on mass transfer kinetics and diffusivity during osmotic dehydration of cranberries. Drying Technology, 36(10), 1158–1169. https://doi.org/10.1080/07373937.2017.1390476. | ||
آمار تعداد مشاهده مقاله: 353 تعداد دریافت فایل اصل مقاله: 191 |