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Abstract

In this study, we aim to contribute to the increasing interest in functional differential equations by obtaining new
existence theorems for non-oscillatory solutions of second-order neutral differential equations involving positive
and negative terms which have not been performed in previous studies. We consider different cases for the ranges
of the neutral coefficients, by utilizing the Banach contraction mapping principle. The applicability of the results
is illustrated by several examples in the last section.

Keywords. Neutral differential equations, Fixed point, Nonoscillatory solution.

2010 Mathematics Subject Classification. 34K11, 34K40, 34A12.

1. INTRODUCTION

Differential equations (DEs) with retarded and advanced arguments, known as mixed DEs, appear in many studies
in both natural sciences and engineering, for example in the problems of optimal control theory [17], deceleration of
neutrons in nuclear reactors [18], models for economic dynamics [19], nerve conduction theory [7], and in a spatial
lattice identification of moving waves [14]. Therefore, researches on the properties of solutions of mixed neutral
differential equations (NDEs) are of great value regardless of the theory of DEs or their practical applications.

It is a well-known fact that the investigation of oscillatory solutions is very important because of the large number
of applications in practical problems. Besides, investigating the existence of non-oscillatory solutions has equally im-
portance. Because when we establish the existence theorems for non-oscillatory solutions completely, the nonexistence
criteria for oscillatory solutions are also determined. The existence of non-oscillatory solutions for ordinary DEs or
dynamic equations on time scales has been researched by many scientists, see e.g. [10, 11, 16]. Meanwhile, the problem
of the existence of non-oscillatory solutions of the NDEs has been studied extensively in the last years. We refer the
reader to the papers [1-3, 6, 9, 20, 22, 23] and references cited therein for recent results on this topic.

In 2005, Zhang et al. [21] dealt with the existence of non-oscillatory solutions of the first order neutral delayed
DEs with variable coefficients. The authors obtained sufficient conditions for the existence of non-oscillatory solutions
turning on the some different intervals of neutral coeflicients. Candan [4] and Mansouri et. al. [15] discussed finding
existence criteria for non-oscillatory solutions of first-order NDEs of mixed type, by utilizing Banach’s fixed point
theorem. In [8], Kong considered a first order mixed NDE involving variable neutral coefficients with their different
ranges and established several new existence theorems for non-oscillatory solutions. By using the Banach contraction
principle, Candan [5] presented some conditions which ensure the existence of non-oscillatory solutions to a higher
order NDE with variable coefficients. In [13], Li and Sun obtained several new theorems for non-oscillatory solutions
of higher order NDEs by Schauder—Tychonoff fixed point theorem. Moreover, existence theorems for non-oscillatory
solutions of second order mixed type NDEs with positive and negative terms were studied by Li et. al in [12].
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In this study, by defining a neutral term that includes both delayed and advanced arguments of the form

Z(t)=yt) + Ri(O)F1(y(t — (1)) + Ra(t) Fa(y(t + ¢2(1))), (N)

we deal with the existence of non-oscillatory solutions of second-order nonlinear mixed type NDEs of the form

(a2 (1)) +Z( Jy(t = g:(1))) —i(mu)y(tm(t))) 0 (E)

1=
for t >ty > 0, where the following requirements are always supposed to hold:
(i) n > 1 and m > 1 are natural numbers, ¥, R; : [tg,00) — R are continuous functions for i = 1,2 and
a € C((ty, 00), (0, 50)) with [ 1/a(n)dy < oc;
(if) F1,Fa2 : [to,00) — [0,00) are continuous functions and there exist two positive constants A; and As such that

0 < Fi(§) < A, 0 < Fa(6) < A€

(i) G4, Hy : [to,o0) — [0,00) are continuous functions such that not all of the G;(¢t) and Hy(¢) vanish in a
neighborhood of infinity for j =1,2,....nand k=1,2,....m

(iv) ¢i(t) > 0, Ca(t) > 0, g;(t) > 0 with ¢t — ¢1(¢) and ¢ — g;(¢) are increasing functions for j = 1,2,...,n and
hi(t) >0for k=1,2,...m

The purpose of this study is to obtain some new sufficient conditions that ensure the existence of non-oscillatory
solutions of NDE (E), by utilizing the Banach contraction mapping principle. To set up our main results, we consider
different cases for the ranges of the neutral coefficients R;(t) and Ra(t).

Let o = max{¢1(¢), g1(t), g2(¢), ..., gn(t)}. By asolution of the NDE (E) we understand a functiony € C ([T, — o, 00 ),
R) such that Z,aZ’ € C! ([T,,00),R) and satisfies NDE (E) on ([T}, o0),R). As usual, such a nontrivial solution
of (E) is said to be oscillatory if it is neither eventually negative nor eventually positive, and otherwise it is called
non-oscillatory.

2. MAIN RESULTS

Theorem 2.1. Suppose that 0 < Ry (t) <11 <1, 0 < Ra(t) <ra <1—7r1 and

/too ! /W<ZG )dﬁdn<oo, (2.1)
/: : /"(ZH )dﬂdn<oo / /\w )|dddn < co. (2.2)

Then Eq. (E) has one bounded non-oscillatory solution.

Proof. In view of (2.1) and (2.2), a t; > to can be chosen with

t1 > to + max {sup Ci(t),sup gi(t),sup ga(t), ..., sup gn(t)} (2.3)
t>to t>to t>to t>to

sufficiently large such that

/Oo / (ZG )Es + [1(0 |> dodn < & — 7, (2.4)

/oo % /77 (ZH 52 + |¢(’l9)‘> didn <~v—-& — (7‘1A1 + 7‘2./42)52, (2.5)
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and

© 1 /77 n m 51
— G119+ Hlﬁ dvd S].—T‘.A—T.A—f, 2.6

/tl a(n) Ji, (; @) ; ( )> g M 2 & (2:6)
where £, and & are positive constants such that

&1+ (T1./41 + 7“2./42)52 <& and ve€ (51 + (7‘1./41 + T2A2)€2,52).

Let 2 be the set of all continuous and bounded functions on [tg, 00) with the supremum norm. Then, € is a complete
metric space. Set

\IJ:{yGQ:&gy(t)SEQ,tEtO}.
Obviously, ¥ is a bounded, closed and convex sub-set of 2. Consider the operator 7 : ¥ — ) as follows:

v —Ri(t)F1(y(t — (1)) — Ra(t)Fa(y(t + C2(t)))
It [ i Gy - 0:9))

= S H@)y(0 + hi(9)) — 0 (9) [ didn, ¢ ta,
(Ty)(t), to<t<t.

(Ty)(®) = (2.7)

Clearly, Ty is continuous. Meanwhile, for any y € ¥ and ¢ > ¢;, from condition (i¢) and inequality (2.4), we have

© 1 n n
(Ty)(t) < 7+/t a(??)/tl (; Gi(9)y(9 — gi(?)) —¢(9)> dddn
© 1 n n
< 9+ / o / (X_; G (0)€: + W)}) aody < &, (2.8)
and from (2.5), we see that
(Ty)t) = v=Rit)F(y(t —¢(t)) — Ra(®)F2(y(t + C2(t)))
© 1 n m
[ ) 1 @ H(0)y(9 + hi(9)) + w<z9>> a9y
> v —(riAr +1242)E

— /(><J ) /77 (Z H; (V)& + W(W) dddn > &;. (2.9)
1 1 \j=1

The inequalities (2.8) and (2.9) imply that 7% C W. So, in order to apply the contraction mapping principle, it is
sufficient to signify that T is a contraction mapping on W. Thus, for every y;,y2 € ¥ and t > t;, we have

(Tyo) () = (T B < RaOF (w1t = G(1) = Fr(a(t = G(0)))]
+ Ra(O)F2 (1 (84 G2(1))) = Fa (2 (4 Ga(1))

k b \i=1

+

+ > H(O) |y (0 + hi(9)) — a9 + hi(ﬁ))|> ddn,

i=1
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which implies that

[(Ty)(t) = (Ty2) (1))

IN

[[y1 — ve|| [mAl + oAy +/oo ﬁ /77 (Z Gi(9) + ZH,»(ﬂ)) dﬂdn]

&
{1 - Sj v = va| = Ca||lyr — w2]|-

IA

This shows with the sup norm that
|Tyr — Tyz| < Cuiljyr — v2-

Since C; < 1, T is a contraction mapping on W. Therefore, there exists a unique bounded non-oscillatory solution,
clearly a positive solution of Eq. (E) such that y € ¥ of Ty = y. |

Theorem 2.2. Assume that (2.1) and (2.2) hold, 0 < Ry (t) <r <1 andry —1 <ry < Ry(t) < 0. Then Eq. (E)
has one bounded non-oscillatory solution.

Proof. In view of (2.1) and (2.2), a sufficiently large t; > to can be chosen satisfying (2.3) such that

oo n
/ L / <ZG )Ex + [0 |> d¥dn < (1 + roAs)Ex — 7, (2.10)
t f

/OO / (Z H 54 + |’l/1 }) d’l9d77 <7vy- E3 — ?"1./4154, (211)
ty

and

S 2
/tl / <ZG + ;Hi(ﬁ)> dddn <1 —r1A; + 124z — g—z (2.12)

where &5 and &4 are positive constants such that
rmA1EL+E3 < (1 + T2A2)€4 and v € (T1A154 + 53, (1 -+ T2A2)54).

Let €2 be the set of all continuous and bounded functions on [tg, c0) with the supremum norm. Then, € is a complete
metric space. Set

\I/:{yeﬂzgggy(t)g&,tzto}.

Obviously, ¥ is a bounded, closed and convex subset of Q. Consider the operator 7 : ¥ — Q defined in (2.7). For any
y € U and ¢t > ¢1, from condition (i7) and inequality (2.10), we have

0 < 2= mRes )+ [ o [ (S 60w -0 v e
© 1 n n
<y oo+ / o / (Z;Giw)rmww)l) dvdn < €4, (2.13)

and from (2.11), we see that

(Ty)(t) > v=Ri(t)Fi(y(t— (1)) —/too / (ZH y(0 + hi (¥ ))+¢(79)> dddn
S | n
Y — 7“1./4184 - /t1 m /tl <§ Hz(ﬂ)gzl + |’$(19)’> dﬁd?? > 53. (214)

Y
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These last two inequalities imply that 7W C W. So, in order to apply the contraction mapping principle, it is sufficient
to show that T is a contraction mapping on W. Thus, for every y;,y2 € ¥ and ¢ > 1, we have

[(Ty)(t) = (Ty2) ()| < Ru(@®)|Fr(ya (t — C(8)) — Frlya(t — Ci(1)) | — Ra(®)| Fa(ya (t + (1)) — Fa(ya(t + (1))

.\ /too %n) /tn (Z Gi(ﬁ)’yl(ﬁ — gi(9)) — y2 (¥ — gz(ﬁ))‘ + ZHi(ﬁ)‘yl(ﬁ +hi(9)) — y2(9 + hz(ﬁ))o dvdn,

which implies that

|(Ty) () — (Ty2)(t)|

IN

lly1r — 2| [7"1./41 —raAs +/t°° . /t” (Z Gi(9) + ZHA@)) dﬁdn]

1
a(n

IN

&
{1 - Eﬂ 1 = w2|| = Callyr — w2-
This shows with the sup norm that

|Tyr — Tyz| < Callyr — v2-

Since Co < 1, T is a contraction mapping on W. Therefore, there exists a unique bounded non-oscillatory solution,
clearly a positive solution of Eq. (E) such that y € ¥ of Ty = y. O

Theorem 2.3. Suppose that (2.1) and (2.2) hold, the inverse functions of t — (1(t) and Fy exist with (t — (t))_1 =
@o(t) > t, and there exist two positive constants By and By such that B1€ < Ffl(g) <B Ifl<r <R (t) <1e <00

and 0 < Ry(t) <ry <11 — 1, then Eq. (E) has one bounded non-oscillatory solution.

Proof. In view of (2.1) and (2.2), a t; > t¢ can be chosen with

¢(t1) - gl(é(tl)) Z to? 1= 172a ceey Ty (215)
sufficiently large such that
i 1 /77 - 7’156
— Gi(9)& + |v(¥)| | dddn < —— — 7, 2.16
/tla(n)h(;()u(n) R (2.16)
| n m &5
/ L / Hi(0)Es + [$(0)] ) d9dn < 5 — (1+ 1o As)Es — 2222, (2.17)
toaln) Ji, i—1 By
and
/wi/n zn:cw)+zm:H-(ﬂ) dddn < 71— (14 rady) — 258 (2.18)
t1 a(n) t1 i=1 ’ i=1 ! T’ - BQ 2 B].SG’ '
where & and & are positive constants such that
& & &5 11&
(14 roda)Es + 815 < 226 and v € ((1+7‘2A2)56 + 315, ;326). (2.19)

With the supremum norm, let © be the set of all bounded and continuous functions on [tg, 00). Then, ) is a complete
metric space. Set

‘I':{yEQ:55§y(t)§56,t2to}.
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Consider the operator T : ¥ — Q as follows:

i i (v~ wo®)
~Ra(6(0) P (y(0(1)) + Ca(6(1)
(Ty) (t)=4q+ f;:s) ﬁ f(f(tl) [Z?:l Gi(D)y(9 — g:(V)) (2.20)
=S HW)y(0 + ha(0) — v ()| avdn) b, e,
T () (t), to <t <t.

Obviously, Ty is continuous. Meanwhile, for any y € ¥ and ¢t > ¢1, from (2.16) and (2.17), it follows that

By 1 " -
(Ty) (t) < W (’YJF/(W @ /¢>(t1) (; Gi(W)y(d — g:(V)) — 1/’(19)> dﬂd??)

B >~ 1 -
712 <,y+/tl o (ZGi(ﬂ)éZﬁ—i— Wﬁ)]) dﬂdn) < &,

i=1

IN

and
o(1))

L: a(ln)/(:t ) (Z Hi(9)y(9 + hi(9)) +w(ﬂ)> dﬁan

=1
B
= (’Y — & — raA2Es

T

ol (Z H()y(0 -+ i) + wwn) dﬁdn) -

This means that TW C W. So, it is sufficient to show that 7 is a contraction mapping on ¥. Thus, for every y;,ys € ¥
and t > t1, we have

(Ty)(t) > B (Rl(l[y—y(gzs(t))—R2<¢<t>>f2<y<¢<t>>+<2<¢<t>>)

v

B2
Ri(o(t))

1

< Gi(9) |y (9 — g:(9)) — y2 (9 — g: (¥
i /¢<t>a(n)/¢(tl)< (D)]y1(9 — gi(9)) — y2(9 — g;(9))|

[(Ty) () = (Ty2) ()] < {|y1(¢(t)) —y2(6(1)| + R2(¢(t))A2‘y1 [6(t) + C2(())] — ya2[0(t) + Ca(0(t))]|

+ Hi(0)|y1(9 + hi(9)) — y2 (9 + hi(ﬂ))|)d19d77}7

or
Bs 1 ME =
[(Ty)(t) — (Ty2)()] < s = well - 1+r2A2+/ T(n)/ STGi) + > Hi(v) | dvdy
t1 ty i=1 i=1
Bor.E
<y — v2| [1— Bjrlé’j = Cs|y1 — v2]|-

This shows with the sup norm that
[Ty — Tyz| < Csllyr — u2]|-

(=)=
E)NE
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Since C3 < 1 from (2.19), T is a contraction mapping on ¥. Therefore, there exists a unique bounded non-oscillatory
solution, clearly a positive solution of Eq. (E) such that y € ¥ of Ty = y. |

Theorem 2.4. Suppose that (2.1) and (2.2) hold, the inverse functions of t — (1(t) and Fy ezist with (t — 1 (t))_1 =
@d(t) > t, and there exist two positive constants By and By such that B1£ < ffl(f) <B. Ifl<ry <R(t) <1e <00
and 1 —ry <rs < Ra(t) <0, then Eq. (E) has one bounded non-oscillatory solution.

Proof. In view of (2.1) and (2.2), a t; > ¢y can be chosen sufficiently large satisfying (2.15) such that

/ / <ZG Ss + |1/J |> d'l9d’l7 S (;12 + 7”2./42) 58 -, (221)
t1

/:O ﬁ /tw7 (Z} Hi(0)Es + |¢(19)|> Aoy <~ & — - (2.22)
and
/°° 1 /" <Zn: Gi(9) + Xm: (19)) Ay < L 1 oty — ET (2.23)
noam) Jy \o = 82 Bi&s
where &; and £ are positive constants such that
Es + 7“;3(?7 < (;12 + 7“2/12) Esand v € (58 + T;?, (;12 + r2A2> ) . (2.24)

With the supremum norm, let 2 be the set of all bounded and continuous functions on [tg, 00). Set
\I/:{yEQ:57§y(t)§€8,t2to}.

Consider the operator 7 : ¥ — Q defined in (2.20). Then, for any y € ¥, from (2.21) and (2.22) for t > t;, we have

(T)(1) < B (72(;@)) [~ Ra6(0) P (4(6(1)) + o (6(1)
+ [ j ol ( | (Z GO0 — g:(9)) - W)) dﬁan
< ( —roAs€s + :o ﬁ /tl77 (; Gi(0)E + ’7/1(19)|> dﬂdn) < &,
and
(Ty)(t) = <R1 ’y y(6(t))
Lt / (i Hi(0)y(0 + 1a(9)) + ww>> owdn]>
s(t) @) oty ]
> — (7—58 —/too /t <ZH1 )Es + W)l) dﬁdn) > &r.
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Using the above one can conclude 7W¥ C ¥. On the other hand, for every y;,y2 € ¥ and ¢ > 1, we have

B (o] m
(Ty)() — (T)()] < yl—y2||7j<1—r2A2+/()a /¢< (ZG +2Hiw>>dﬂdn>
t t1) \i=1 i=1
B, < 1 7 -
< w2 (1rdes [ SO G0) + S () ) dvy
1 noaln) Jy, = Py
BQT*57
<y — w2l 1317“1581 = Ca||y1 — v2||,

this shows with the sup norm that
| Ty — Tyz| < Callyr — v2]|-

Since C4 < 1 from (2.24), T is a contraction mapping on ¥. Therefore, there exists a unique bounded non-oscillatory

solution, clearly a positive solution of Eq. (E) such that y € ¥ of Ty =y |
Theorem 2.5. Suppose that (2.1) and (2.2) hold, —1 <11 <R1(t) <0 and 0 < Rao(t) <re <1+ 7. Then Eq. (E)
has one bounded non-oscillatory solution.
Proof. Due to (2.1) and (2.2), we can chose a t; > to sufficiently large satisfying (2.3) such that
e} 1 n n
/ L / S G0 + [$(9)] | dvdn < (1+ 1A E — 7, (2.25)
o) Jy P
S| n m
/ 7/ Hi(ﬁ)glo + }1&(19)’ d’l9d77 <v-— roAsE10 — 59, (2.26)
o) Jy P
and
>~ 1 = &
/ / Z Gi(9) + S Hi(0) | dvdy < 1+ 11A; —rady — 22 (2.27)
t1 t1 i—1 510
where & and 510 are p051t1ve constants such that,
roAsE19 + &9 < (1 + ’I"1.A1)510 and v e (T2A2510 + &y, (1 + T’1A1)510).
With the supremum norm, let 2 be the set of all bounded and continuous functions on [tg, 00). Set
U = {ye 0: & Sy(t) Sgl(),t Zto}
Consider the operator 7 : ¥ — Q as follows:
v =Ri()F1(y(t — C1(t)) — Ra(t) Fa(y(t + C2(t)))
T | b [, Gi@)y(9 — :(9)) 225
=S HiW)y(0 + hi(0)) = ¥(9) | dddn, 1> 4,
(Ty)(t1), to<t<t.
Clearly Ty is continuous. For any y € ¥ and ¢ > ¢, we obtain from (2.25) and (2.26) that
T < 1-R@AEEGO)+ [ o [ (Z G0 — i(9) - ww>) avdy
t =
© 1 n n
< vanlsw/ / S Gi0)Ew0 + [6(0)] | dody
t1 =1
< &, (2.29)
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and
(Ty)(t) > v —=Ra(t)F2(y(t — (1)) — /too / (ZH y(9 + hi(9)) + w(ﬂ)> dddn
> v —raAxE0 — /t‘x’ ﬁ /t" (Z H;(9)E10 + ’1/1(19)’) dvdn

> & (2.30)

So T¥ C U. On the other hand, for every y1,y2 € ¥ and ¢ > t1, we get from (2.27) that

|(T1) () — (Ty2) ()]

IN

|1 — 2| ( — 1AL + 1A

| s (Z Gi(9) + Zm(ﬁ)) cwdn>

i=1 =1

&
llyr — 2| [1 - 91 = Cslyr — v2]|;

+

IA

E1o
this shows with the sup norm that
[Ty — Tyz| < Csllyr — u2|-

Since C5 < 1, then T is a contraction mapping on W. Therefore, there exists a unique bounded non-oscillatory solution,
in fact a positive solution of Eq. (E) such that y € ¥ of Ty = y. O

Theorem 2.6. Assume that (2.1) and (2.2) hold, =1 < r;1 < R1(t) <0 and —1 —r; < ro < Rao(t) < 0. Then Eg.
(E) admits one bounded non-oscillatory solution.

Proof. Due to (2.1) and (2.2), we can choose a t; > t sufficiently large satisfying (2.3) such that

oo n
/ 1 / (ZG 812 =+ |1/)(7.9)’> dl?d?? < (1 +ri A+ 7"2./42)512 -, (231)
t1

/Oo 1 /n<2H )E12 + (¥ |>d19dn§fy€11, (2.32)
21 i

and

< 1 “ £
/ / ( E G -|- E Hz(ﬁ)> dddn <1+r1 A + 124y — 8711, (2.33)
t1 i=1 i=1 12

where £11 and &5 are positive constants such that
Enn < (L +7r1AL +r242)€12 and v € (E11, (14 1A + r0A2)Er2).

With the sup norm, let 2 be the set of all bounded and continuous functions on [tg,00). Then ) is a complete metric
space. Set

v={yeQ:&n <yt) <t >to}.
Consider the operator 7 : ¥ — Q by (2.28). Then for any y € ¥ and ¢t > ¢, from (2.31) and (2.32), we obtain

(Ty)(t) < v=Ri®)F(y(t— (1)) — Ra(t)Fa(y(t+ (1)) + /too / (ZG y(¥ — gi(9)) — 1/)(19)>d19dn

IA

v —riAi1€12 — raA2b12 +/ / <ZG V12 + |¥( )|> dddn < 1o, (2.34)
t1

(&)
ENE
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and

3
<
S—
-
S~—
Vv

[ee] 1 n
> 7_/t / (ZH Y (9 + hi(9 ))+1/)(19)>d19d77
y—/tl / (ZH )E12 + |1 (9 |> dvdn > &13. (2.35)

So TW¥ C ¥. On the other hand, for every y1,y2 € ¥ and t > t1, we get

© 1 n n m
(Ty)(®) = (Ty) ()] < |y —we||| —rid1 —r2A2+ | — Gi(0)+ ) Hy(¥) | dvd
(T - Tl < -l [t [ (e o) asa)
611
< v — 2| [1 — 512] = Csllyr — v2]|-

This implies that
|Tyr — Tyz| < Collyr — v2]|;

i.e., T is a contraction mapping on W. Therefore, there exists a unique bounded non-oscillatory solution, in fact a
positive solution of Eq. (E) such that y € ¥ of Ty = y.

O

Theorem 2.7. Suppose that (2.1) and (2.2) hold, the inverse functions of t — (1 (t) and Fy exist with (t — (1(15))71

o(t) > t, and there exist two positive real numbers By and By such that B1€ < fl_l(f) < B If —00 < rie < R1(E) <
r1 < —1 and 0 < Ra(t) <ry < —r1 — 1, then Eq. (E) admits one bounded non-oscillatory solution.

Proof. From (2.1) and (2.2), we can chose a t; > to sufficiently large satisfying (2.15) such that

/:O 1 /”(ZG )E14 + [P (0 |>

/oo 1 /77 (ZH 514 + |7/1 }) d’l9d’l7 < — <1 +roAdg + B > Ea — (237)

(2.36)

and

o 1 1 - r**gl?) < )
G;(9) + H;(9) | dddn < 1+ A +7 2.38
/n / (Z ; ( )> Bi1&14 22T B, (2.38)
where £13 and &4 are positive constants such that

7"**513 7"**513 T1
— 1+ — d — —(1 — | & .
B, ( + BZ + TQAQ) &4 and 7y € < B, ( + 1Ay + Bg) 14)

With the sup norm, let 2 be the set of all bounded and continuous functions on [tg, 00). Set

U= {9593513 <y(t) §514,t2t0}.

Consider the operator 7 : ¥ — Q as follows:

Fr iy (v + o)

+RAB(0)F (y(6() + G (@(1))

(To) () = = [ by Sty | S Gi@)y( = ga(9) (2.39)
= S Hi(@)y (9 + hi(9)) = w(9)]avdn) }, 11 <,

Ty)(t), to<t<t.
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It is easy to see that Ty is continuous. Meanwhile, for any y € ¥ and ¢ > ¢y, from (2.36) and (2.37), it follows that

1(6(1))

e ] 1 n m
+ /¢ o ) /¢ o (z; Hi(9)y(9 + hi(9)) + 1/1(19)) dﬁan

B

—72 (7 + E1a + 1242614
1

+/:O ! /77 (ZH VE1a + \w(0)|> dﬁdn> < &, (2.40)

-1 Rl B -
(Ty) t) = B (W (’7 - /qb(t) m /¢(t1) <IZ Gi(0)y (0 — gi(V)) — w(ﬁ)> dﬁdn))

=1

> 7% (7/:0 1 /n (ZG )14 + |(0 |> dﬂdﬁ) > &13. (2.41)

This means that 7% C ¥. On the other hand, for every y1,y2 € ¥ and t > t;,

(Ty)(®) < BQ<R‘1[v+y<¢><t>)+R2<¢<t>>f2<y<¢<t>>+c2<¢<t>>

IN

and

_B [ee) 1 n n m
|(Ty) (@) = (Ty2)®)] <y — vl 2<1+r2A2+/ —/ <ZGi(ﬁ)+ZHi(ﬁ)>dﬁdn>
o) () Jo(r,) im1 i=1
BQT**EIP)
< — _ 2=t o — sl
<y — w2l 811"15141 7||y1 Y2

this implies that
[Ty — Tyz| < Crllyr — u2]|-

Since C7 < 1 by (2.38), then T is a contraction mapping on ¥. Therefore, there exists a unique bounded non-oscillatory
solution of Eq. (E) such that y € ¥ of Ty = y.

O

Theorem 2.8. Suppose that (2.1) and (2.2) hold, the inverse functions of t — (1 (t) and Fy exist with (t — (1(15))71

B(t) > t, and there exist two positive real numbers By and By such that B1& < Fy (&) < Bob. If —00 < Ty < Ry(t) <
r1 < —1landr;+1<ry <Ra(t) <0, then Eq. (E) admits one bounded non-oscillatory solution.

Proof. Due to (2.1) and (2.2), we can chose a sufficiently large ¢; > to that satisfies (2.15) such that

[ L (G o) an
/oo / (ZH )16 + | (0 |> dddn < — <1 i ;;) Ei6— 7, (2.43)

<1 T . Tex&15 T
— H; < -1—-—= 2.44
[t [ (S ) anay < 81 240

a(n =1 i=1
(&)
ENE

&6 + 7, (2.42)

and
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where £15 and £14 are positive constants such that

_ <T2A2516 + r B1l5> < — (1 + ;,12> 16 and ~v € (— (’1”2./42516 + r 8115> ,— (1 + ;Z) 516) .

With the sup norm, let © be the set of all bounded and continuous functions on [tg, c0). Set

U= {yEQ:815 < y(t) §516,t2t0}~

Consider the operator 7 : ¥ — Q as (2.39). For y € ¥ and t > ¢, from (2.42) and (2.43),

-1 0 1 n m
(To)0) < 32<Rl(¢(t))[v+y(¢(t))+ I (;meywmw))ww)) owdn})

s (’y A (Z Hi(0)€16 + |w(z9>|) dﬂdn)

165 (2.45)

IN

IN

and

3
<

SN—
e~
S~—
Y

-1
B, <R1(¢(t)) [7 + Ra(o(t) Fa (y(o(t)) + Ca(8(1)))

- /4) : P /¢ ( | (Z G (9)y(0 — g,(0)) — ¢<ﬂ>) dﬁan

1=1

> ;Bl (v +roAsEig — / N ﬁ / ! (Z Gi(9)Ei6 + |1/J(19)|> d19d77>

i=1
> &5, (2.46)

this means that 7% C W. On the other hand, for every y1,y2 € ¥ and t > t1, we get from (2.44) that

782 ) 1 n n m
T —(Ty2 <y —u2 1—r2Ay — G; (9 H;(9) | dvd
(To)® — (Te)®] < llys — well ( +/¢ /¢ (Z @)+ ()) n>

[ (1) (1) Jo(t) Py
—By 1 Ui n m
<y =2l —— |1 —r2A2+/ —/ D Gi(W) + > Hi(9) | didn
T noom) Jy \o Pl
Bar..&
< lyr — w2l ll - M] =Cs |ly1 — v2ll,

this implies that
| Ty — Tyz| < Csllyr — v2]|-

Since Cg < 1, then T is a contraction mapping on W. Hence, there exists a unique bounded non-oscillatory solution,
in fact an eventually positive solution of (E) such that y € ¥ of Ty = y. O

3. APPLICATIONS AND A REMARK

We give two interesting examples that illustrate the versatility of ours results, in this section. Different illustrative
examples can easily be constructed for other theorems, similarly.
an
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Example 3.1. Considerr the NDE

exp(t) (;,(t) - %y(t —67m) + B — exp (—3t)} y(t+ 77r)>’1/

+5exp(—2t)y <t - 72> +3exp (—2t)y (t —2m)
—8exp (—2t)y (t + 8m) = —18exp (—2t) .

Noting that

2
37

Gi1(t) =5exp(—=2t), Ga(t) =3exp(—2t), Hy(t)=8exp(—2t).
A direct computation ensures that all the conditions of Theorem 2.5 are fulfilled. Actually, y(¢) = 3+ sint is such a

4 t 1
exp(t < E exp ( } Yy <2> LO +exp (— Qt)} y(2t)>
t

non-oscillatory solution of Eq. (3.1).
| |
t t 6 t 3t
(4> +30exp (—4t) y (2) — exp (—2) Y (2>

t)y
t 1
30exp( 2>y(4>2exp )JrGexp(Qt)g)Gexp(Z)

Note that

a(t)=exp(t), Ri(t)=-— Ra(t) = é —exp (—3t),

Example 3.2. Consider the NDE

4 1
Ri(t) = 5 +exp(=2t), Rat)= 10 exp (—21),

Gi(t) = gexp (=3t), Ga(t) =30exp(—4t), Hy(t) = gexp <_;) ,

Ha(t) = 30 exp (—;) () = exp(b).

With a direct calculation, one can see that all the conditions of Theorem 2.6 are fulfilled. Indeed, y(t) = 1+ exp (—2t)
is such a non-oscillatory, actually positive, solution of Eq. (3.2).

Remark 3.1. It should be pointed out that existence theorems presented in [5, 12, 13] fail to apply to the equations
(3.1) and (3.2), because of the structure of functions G1(t) and Gz(t) in (3.1), and there exist variable deviating
arguments in (3.2).

4. CONCLUSION

This paper contains some sufficient conditions for the existence of non-oscillatory solutions of a comprehensive class
of second order functional DEs with a mixed neutral term. By considering different cases for the ranges of the neutral
coefficient functions, we utilize the Banach contraction mapping principle to prove our results.
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