- [1] M. A. Aba Oud, A. Ali, H. Alrabaiah, S. Ullah, M. A. Khan, and S. Islam, A fractional order mathematical model for COVID-19 dynamics with quarantine, isolation, and environmental viral load, Adv. Differ. Equ., 106 (2021), 1–12.
- [2] T. Abdeljawad and D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107.
- [3] I. Ahmed, G. U. Modu, A. Yusuf, P. Kumam, and I. Yusuf, A mathematical model of Coronavirus Disease (COVID-19) containing asymptomatic and symptomatic classes, Results. Phys., 21 (2021), 103776.
- [4] B. S. T. Alkahtani, Chu´as circuit model with Atangana-Baleanu derivative with fractional order, Chaos. Solitons. Fractals, 89 (2016), 547–551.
- [5] E. S. Allman and J. A. Rhodes, Mathematical models in biology: An Introduction, Cambridge University Press, 2003.
- [6] R. M. Anderson and R. M. May, Helminth infections of humans: mathematical models, population dynamics, and control, Adv. Parasitol., 24 (1985), 1–101.
- [7] A. A. M, Arafa, I. M. Hanafy, and M. I. Gouda, Stability analysis of fractional order HIV infection of +T cells with numerical solutions, J. Fract. Calc. Appl., 7 (2016), 36–45.
- [8] A. Atangana, On the new fractional derivative and application to nonlinear Fisher reaction-diffusion equation, Appl. Math. Comput., 273 (2016), 948–956.
- [9] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769.
- [10] F. Brauer and C. Castillo-Ch´avez, Mathematical Models in Population Biology and Epidemiology, Texts Appl. Math., 2001.
- [11] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods, Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006.
- [12] K. Diethelm, The Analysis of Fractional Differential Equations, Berlin Heidelberg, Springer-Verlag, 2010.
- [13] K. Diethelm, N. J. Ford, A. D. Freed, and Y. U. Luchko, Algorithmsfor thefractional calculus selection of numerical methods, Comput. Methods. Appl. Mech. Eng., 194 (2005), 743–773.
- [14] X. L. Ding and Y. L. Jiang, Waveform relaxation method for fractional differential algebraic equations, Fract. Calc. Appl. Anal., 17 (2014), 585–604.
- [15] J. Djordjevic, C. J. Silva, and D. F. M. Torres, A stochastic SICA epidemic model for HIV transmission, Appl. Math. Lett., 84 (2018), 168–175.
- [16] L. Edelstein-Keshet, Mathematical models in biology, SIAM, 2005.
- [17] F. Ghanbari, K. Ghanbari, and P. Mokhtary, Generalized Jacobi-Galerkin method for nonlinear fractional differ- ential algebraic equations, Comp. Appl. Math., 37 (2018), 5456–5475.
- [18] F. Ghanbari, K. Ghanbari, and P. Mokhtary, High-order Legendre collocation method for fractional-order linear semi-explicit differential algebraic equations, Electron. Trans. Numer. Anal., 48 (2018), 387–406.
- [19] F. Ghoreishi and M. Hadizadeh, Numerical computation of the Tau approximation for the Volterra-Hammerstein integral equations, Numer. Algor., 52 (2009), 541–559.
- [20] J. F. G´omez, L. Torres, and R. F. Escobar, Fractional Derivatives with Mittag-Leffler Kernel, Springer, 2019.
- [21] J. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral Methods for Time-Dependent Problems, Cambridge University Press, Cambridge, 2007.
- [22] M. A. Khan and A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alex. Eng. J., 59 (2020), 2379–2389.
- [23] S. Kumar, J. Cao, and M. Abdel-Aty, A novel mathematical approach of COVID-19 with non-singular fractional derivative, Chaos Solit. Fractals, 139 (2020), 110048.
- [24] B. P. Moghaddam, J. A. T. Machado, and A. Babaei, A computationally efficient method for tempered fractional differential equations with application, Appl. Math. Comput., 37 (2018), 3657–3671.
- [25] F. Nda¨ırou, I. Area, J. J. Nieto, and D. F. M. Torres, Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan, Chaos Solit. Fractals, 135 (2020), 109846.
- [26] F. Nda¨ırou, I. Area, J. J. Nieto, C. J. Silva, and D. F. M. Torres, Mathematical modeling of Zika disease in pregnant women and newborns with microcephaly in Brazil, Math. Methods. Appl. Sci., 41 (2018), 8929–8941.
- [27] K. Parand, H. Yousefi, M. Fotouhifar, M. Delkhosh, and M. Hosseinzadeh, Shifted Boubaker Lagrangian approach for solving biological systems, Int. J. Biomath., 11 (2018).
- [28] K. Parand, Z. Kalantari, and M. Delkhosh, Quasilinearization-Lagrangian method to solve the HIV infection model of CD4(Math Processing Error) T cells, SeMA. J., 75 (2018), 271-283.
- [29] K. Parand, F. Mirahmadian, and M. Delkhosh, The pseudospectral Legendre method for solving the HIV infection model of CD4+T cells, Nonlinear Studies, 25 (2018), 241–250.
- [30] I. Podlubny, Fractional Differential Equations, New York, Academic Press, 1999.
- [31] A. Rachah and D. F. M. Torres, Dynamics and optimal control of Ebola transmission, Math. Comput. Sci., 10 (2016), 331–342.
- [32] P. Rahimkhani and Y. Ordokhani, The bivariate Mu¨ntz wavelets composite collocation method for solving space- time fractional partial differential equations, Comput. Appl. Math., 39 (2020), 3–29.
- [33] P. Rahimkhani and Y. Ordokhani, Approximate solution of nonlinear fractional integro-differential equations using fractional alternative Legendre functions, J. Comput. Appl. Math., 365 (2020), 112365.
- [34] P. Rahimkhani and Y. Ordokhani, Numerical solution a class of 2D fractional optimal control problems by using 2D Muntz-Legendre wavelets, Optimal Control Appl. Methods, 39 (2018), 1916–1934.
- [35] P. Rahimkhani and Y. Ordokhani, A numerical scheme based on Bernoulli wavelets and collocation method for solving fractional partial differential equations with Dirichlet boundary conditions, Numer. Method Partial Differential Equation, 35 (2018), 6–21.
- [36] P. Riyapan, S. E. Shuaib, and A. Intarasit, A Mathematical Model of COVID-19 Pandemic: A Case Study of Bangkok, Thailand, Comput. Math. Methods Med., 2021 (2021), 11 pages.
- [37] J. Shen, T. Tang, and L. L. Wang, Spectral Methods Algorithms, Analysis and Applications, Springer-Verlag, Berlin, 2011.
- [38] S. Wang, W. Tang, L. Xiong, M. Fang, B. Zhang, C. Y. Chiu, and R. Fan, Mathematical modeling of transmission dynamics of COVID-19, Big Data. Inf. Anal., 6 (2021), 12–25.
- [39] D. Yan and H. Cao, The global dynamics for an age-structured tuberculosis transmission model with the exponential progression rate, Appl. Math. Model., 75 (2019), 769–786.
|