
Tabriz Journal of Electrical Engineering (TJEE), vol. 53, no. 1, Spring 2023                                                                                                Serial no. 103 
DOI: 10.22034/tjee.2023.16064 

 

Optimizing Data Transfer and Convergence Time 

for Federated Learning based on NSGA II 
 

Mahdi Fallah1, Pedram Salehpour2* 

 

Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran. 
1 m.fallah1400@ms.tabrizu.ac.ir 
2 p.salehpoor@tabrizu.ac.ir 

 
*Corresponding author 

 

Received: 08/01/2023, Revised: 08/02/2023, Accepted: 25/03/2023. 

 

 

Abstract 

Face recognition from digital images is used for surveillance and authentication in cities, organizations, and personal 

devices. Internet of Things (IoT)-powered face recognition systems use multiple sensors and one or more servers to 

process data. All sensor data from initial methods was sent to the central server for processing, raising concerns about 

sensitive data disclosure. The main concern was that all data from all sectors that could contain confidential information 

was placed in a central server. Federated learning can solve this problem by using several local model training servers for 

each region and a central aggregation server to form a global model in IoT networks. This article presents a novel approach 

to optimize data transfer and convergence time in federated learning for a face recognition task using Non-dominated 

Sorting Genetic Algorithm II (NSGA II). The aim of the study is to balance the trade-off between training time and model 

accuracy in a federated learning environment. The results demonstrate the effectiveness of the proposed approach in 

reducing data transfer and convergence time, leading to improved performance in face recognition accuracy. This research 

provides insights for researchers and practitioners to enhance the efficiency of federated learning in real-world 

applications. 
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1. Introduction 

The face is one of modern society's most illuminating 

forms of communication. Contrary to face recognition by 

people to understand their peers, which is a natural 

phenomenon, facial geometry recognition by machines is 

still a difficult challenge. Face recognition is identifying 

a person using a digital photograph of their face [1]. 

People have recently been authenticated using biometric 

identity techniques, including face recognition, 

fingerprint recognition, iris recognition, etc. An 

individual is recognized using a digitized facial picture in 

face recognition, which has been the subject of study in a 

very active research community for more than a decade. 

A person is recognized based on some distinctive facial 

characteristics [2]. Face recognition authentication 

technology has various applications, such as city and 

organizational monitoring systems [3]. However, 

recognizing people's faces from diverse image data with 

different characteristics is a time-consuming task that 

must be done with high accuracy [4]. 

In image-based learning and recognition, due to the large 

volume of data, processing and learning the model for 

recognition requires high processing power, including a 

powerful processor, and is very time-consuming. On the 

other hand, if there is a lack of training data in the model 

training phase, the system's accuracy will be very low in 

classification and recognition task [27]. Unlike 

conventional deep learning methods that require a large 

number of data samples to train their model, humans can 

learn by seeing very few samples of a phenomenon [5]. 

In recent years, researchers in image processing have 

developed a new concept called few-shot learning in 

machine vision to create the ability to learn with limited 

labeled samples. In this type of learning, in addition to 

learning based on the training labeled data, the system 

uses the previous information in the trained categories 

related to the new category to strengthen the model for 

the new category [6]. 

In theory, the existence of several objectives results in a 

set of optimum solutions, typically termed Pareto-

optimal solutions rather than a single ideal answer. One 

of these Pareto-optimal solutions cannot be deemed 

superior to the other without sufficient information [7]. 

In order to solve this, a user must identify as many 

Pareto-optimal solutions as possible [8]. By focusing on 

a single Pareto-optimal solution at a time, traditional 

optimization approaches (including the multi-criteria 

decision-making methods) advise reducing the 

multiobjective issue to a single-objective optimization 

problem [28]. Since using such a strategy to identify 

many answers, it must be applied numerous times to 

discover a new solution with each simulation run [9]. To 

find the optimal answer for multi-objective problems, 

researchers have introduced a method called NSGA II. 

This method, which is used to optimize the answer, is 

based on the conventional genetic algorithm, but unlike 
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it, it is multi-purpose [10]. In the field of face recognition, 

there is a trade-off between training time and recognition 

accuracy, and as much as we try to increase accuracy, 

time is lost. A balance between these goals (training time 

and recognition accuracy) must be created to find the 

optimal answer [11]. 

The high volume of information in image processing 

operations such as face recognition and the high cost of 

transferring this information from edge servers to central 

servers make using centralized methods, such as 

centralized deep learning (CDL), non-optimal [12, 13]. 

On the other hand, local model training methods such as 

localized deep learning (LDL) cannot be performed in 

few-shot learning operations because local servers only 

have local models trained with limited local data [14, 15]. 

In addition, security concerns about information leakage 

from central servers make it impossible to use centralized 

methods in sensitive situations because releasing this 

information means releasing the identity information of 

different people [16, 17]. Since Google initially launched 

it, federated learning (FL) has proved essential in 

enhancing the performance of a variety of applications. 

FL is an environment that makes cooperative machine 

learning possible [18, 19]. 

The main contributions of this work are as follows: 

 We present a novel architecture for few-shot 

learning in distributed Internet of Things (IoT) 

networks that is based on federated learning. 

 By utilizing NSGA II optimizer algorithm, we 

defined two fitness functions for training time 

and accuracy to make a balance between these 

two goals. 

 The federated learning architecture, along with 

the combination of locally-generated models 

from local data, was utilized to optimally 

distribute traffic and processing load across 

local servers while preserving personal data 

privacy. This resulted in the generation of well-

trained global models. 

The remainder of this article is organized as follows. In 

part 2, we reviewed the previous works in the field of face 

recognition and the methods used to increase accuracy 

and reduce training time. Section 3 presents a new face 

recognition method using the federated learning 

algorithm and NSGA II optimizing algorithm with the 

two goals of increasing recognition accuracy and 

reducing training time. Section 4 presents the results 

obtained from the simulation of the proposed method and 

its superiority over previous works. Finally, section 5 

summarizes the proposed method and its results. 

 
2. Related Works  

In recent years, much research has been done in the field 

of few-shot learning, which aims to improve learning and 

recognition with a small number of labeled training data. 

Liang et al. in [20] introduced an OICS-VFSL model for 

microservice-oriented intrusion detection to apply to IoT 

devices with limited resources. They presented a unified 

framework for few-shot learning that used variational 

feature representation. It primarily consisted of two 

fundamental operations: 1) intra-class distance 

optimization based on variational feature representation 

and 2) inter-class distance optimization based on feature 

concatenation. The evaluation results showed the 

appropriate performance of this method in detecting 

zero-day attacks with imbalanced data in the Internet of 

Things (IoT) networks. Despite the effectiveness of this 

method in detecting zero-day attacks, the combination of 

incremental clustering, feature selection, and labeling can 

lead to a higher computational complexity compared to 

simpler clustering methods. Moreover, there is a risk of 

overfitting the data if the model is too complex or if there 

is not enough training data. Thirdly, the quality of the 

cluster labels generated by the OICS-VFSL model may 

depend on the quality of the feature selection and labeling 

methods used. 

To address the low accuracy of existing algorithms in 

light of inadequate traffic, Zhao et al. in [21] presented 

Festic, a few-shot learning-based solution for IoT traffic 

classification. Festic outperformed other state-of-the-art 

algorithms like BSNN and IoT Sentinel. Festic enhances 

recall by 10.19%, precision by 9.13%, and F1-measure 

by 9.80% compared to BSNN. Festic raises recall by 

8.81%, accuracy by 8.10%, and F1-measure by 8.87% 

compared to IoT Sentinel. Although the method resulted 

in an increase in accuracy, it was observed to have a 

prolonged training time for the model. 
Yang et al. in [22] put forth a confidence-based sample 

selection approach that simultaneously integrates the 

classification and detection tasks. Analyses showed that 

the highest quantity of information they chose 

outperforms randomly selected samples, demonstrating 

the efficacy of their strategy for selecting redundant IoT 

data sets. The model's accuracy is 2.7% more than 

random selection when the classification network is 

employed to test the samples. Despite this, confidence-

based sample selection can introduce bias into the 

training process if the samples selected for training are 

not representative of the underlying distribution of the 

data. In addition, confidence-based sample selection adds 

an additional layer of complexity to the training process, 

making it more difficult to debug or understand why the 

model makes certain predictions. 

Jia et al. in [23] provide a unique few-shot learning-based 

technique for classifying IoT traffic that can identify IoT 

traffic effectively with just a few labeled samples and 

suggest a more reliable traffic characteristic. To classify 

the different forms of IoT traffic, FITIC uses the raw IoT 

flow as its input, creating features from the two parts of 

flow statistics and payload bytes before introducing a 

classification model based on feature similarity. 

Compared to BSNN and FS-Net, FITIC's average F1-

measure was 14.13% and 8.11% higher, respectively. 

Additionally, they discover that FITIC outperforms the 

other two approaches in its capability to label novel 

classes, with an average recall of 96.5% for novel classes, 

9.6% greater than BSNN, and 9.58% higher than FS-Net. 

However, FITIC may not be well-suited for large-scale 

IoT traffic datasets if the computational cost of the 

method becomes too high. 

When there needed to be more samples, Yang et al. in [24] 

studied a technique for fusing IoT devices with deep 

learning models. For limited sample sets, they provided 

a text sentiment analysis model known as FSLM. Using 

the self-attention mechanism, they trained a basic model 
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to extract sentiment features from the input text. They 

then constructed a Siamese network using two self-

attention models with identical parameters. Finally, used 

Mahalanobis distance to assess how similar the feature 

vectors of various categories are to one another. 

According to the test results, their suggested FSLM 

model offers superior classification performance over 

other models. The FSLM approach has some benchmark 

importance for situations when text sentiment analysis 

lacks sample numbers. On the other side, fusing IoT 

devices through FSLM can present several drawbacks, 

including complexity, scalability issues, integration 

difficulties, latency in the fusion process, security 

concerns for sensitive data, high costs for implementation 

and maintenance, and the need for specialized hardware, 

software, and personnel. As the number of IoT devices 

increases, the scalability of the FSLM system may 

become an issue, while integrating different devices with 

varying protocols and hardware configurations can also 

be challenging. FSLM can also introduce latency, 

affecting real-time performance, and pose security risks 

if sensitive data is transmitted between devices. The cost 

of implementation and maintenance can also be high, 

making it a costly solution for organizations. 
 

3. Methodology 

The federated learning structure is the central component 

of the method that we have proposed. The first layer of 

this architecture, as shown in Fig. 1, is comprised of 

surveillance cameras deployed in several different 

surveillance zones capable of capturing images of high 

quality and degree of precision. Network infrastructure 

equipment such as switches and routers are utilized in 

each surveillance area in order to connect the cameras to 

the local server. The local servers in each region are 

connected to the central server set, which may be hosted 

internally by the organization or externally by a third 

party. 

Collecting and processing multimedia data is delegated 

to the local servers in each area. The memory space 

required for high-quality multimedia files is typically 

ample, and it is not easy to transfer such files across 

networks. In order to improve quality of service (QoS) 

metrics like response time, one of the primary functions 

of local servers is to perform load balancing in order to 

find the best path from data collecting equipment and 

sensors like cameras to the local server. Managing the 

local network infrastructure to enhance QoS metrics is 

one of the most critical tasks of local servers. 

In the default mode of the federated learning algorithm, 

the data collected from the cameras of each area are 

processed by the local training server and using deep 

neural network learning algorithms to build the machine 

learning model. The main drawback of this model is that 

it was created only with local data collected from that 

area. When faced with new samples unfamiliar with that 

area, it cannot perform proper face recognition. On the 

other hand, few-shot learning also needs models from 

other regions to strengthen the learning model to create a 

more robust model for face recognition. For this purpose, 

there is a central server to collect all these local models 

from different areas and create a global model by 

aggregating all local models in several communication 

rounds with local servers. By sending this global model 

to all local servers, these servers can perform few-shot 

learning because now they have aggregated models of 

other areas. However, nevertheless, no area has access to 

the raw data of other areas, and privacy is maintained for 

each area's data. In addition, because only local and 

global models are transmitted between the central server 

and local servers instead of raw data transfer, there is no 

concern about private information leakage. 

 

 
Fig. 1. Arcitecture of proposed method based on federated 

learning with NSGA II optimizer. 

 
Our proposed method has two main goals: improving the 

training time and increasing the accuracy of face 

recognition. The local training server uses an NSGA II 

module that periodically evaluates the generated models 

to find the best solution to satisfy these two goals. NSGA 

II is an evolution-based algorithm that uses principles 

from genetic algorithms and non-dominated sorting to 

find a set of non-dominated solutions, known as the 

Pareto front, representing a trade-off between the 

objectives. NSGA II works by first generating an initial 

population of candidate solutions. The solutions are then 

evaluated based on the multiple objectives, and their non-

domination levels are determined. The solutions are 

sorted into different levels of non-domination, with 

solutions in the first level being the most non-dominated. 

The solutions are then subjected to genetic operations 

such as crossover and mutation to generate a new 

population. The process is repeated until a satisfactory set 

of solutions is obtained. 

In the context of federated learning, NSGA II can 

optimize data transfer and convergence time by finding a 

trade-off between the two objectives. NSGA II can 

determine the optimal amount of data to be transferred 

between the client devices and the server and the optimal 

frequency and duration of communication to ensure 

efficient data transfer and quick convergence.NSGA II 

can also handle the dynamic nature of federated learning, 

where the network and data distribution can change over 

time. This makes NSGA II well-suited for real-world 

federated learning scenarios, where the optimization of 

data transfer and convergence time is critical for the 

success of the learning process. 

Unlike the genetic algorithm, two fitness functions can 

be used in this algorithm to evaluate the generated 

generation and select the best generation that creates a 

balance between the two fitness functions. Each of the 

local models has different parameters, and each has a 



Tabriz Journal of Electrical Engineering (TJEE), vol. 53, no. 1, Spring 2023                                                                                                Serial no. 103 
DOI: 10.22034/tjee.2023.16064 

64 

different effect on the final efficiency and accuracy of 

that model. First of all, we define the fitness function for 

the accuracy of the model according to equation 1 [25]: 
53 53

, ,( 1)
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j j

j j

V j M M 
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    (1) 

In this equation we take ,i kM  as model parameter matrix 

from the i-th model after k-th federated learning global 

model aggregation rounds. Accordingly, ,i k

jM  is the j-th 

column of matrix ,i kM . Sum of all absolute values of all 

parameters in the j-th layer is ,i k

jM . The engagement 

of the j-th column on total model accuracy can be 

calculated as v(j). When the value of v(j) increases, the 

significance of data from column j increases in the model. 

For federated model aggregation, each surveillance area's 

local model training server sorts the v(j) values of the 

model's parameter matrix by decreasing order, then sends 

only the parameters of the first n columns to the federated 

learning centralized aggregation server. The particular 

reason for the employment of this fitness function is that 

the best models and parameters that have the most 

significant effect on face recognition will always be sent 

to the central server for aggregation, which will 

eventually improve the accuracy of the global model. 

Additionally, due to a decrease in the amount of data 

transmitted between the local servers and the central 

server, there is less traffic load on the network, and the 

quality of service (QoS) is improved. 

Reducing the amount of time needed for training is the 

second objective for which a fitness function should be 

defined. The fact that time directly correlates with the 

amount of energy used by electronic equipment is one of 

the essential aspects to consider in this scenario. The 

longer the processing takes, the more energy will be used. 

The second fitness function for the NSGA II module 

should be defined to optimize the training time. 

According to the equation presented by Dev et al. in [26], 

the reduction of model training time depends on factors 

such as the impact of each data in global model 

aggregation, the distance between central aggregation 

server and local model training server, and the distance 

between each sensor and local model training server. 

Moreover, it depends on the network's delay in data 

transmission, the amount of data produced by each 

sensor, the amount of local model produced by each local 

model training server in each area, and the total volume 

of data and model. We define the second fitness function 

as equation 2: 
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where the total of the weighted parameters (v,ϕ,χ,φ,ω) 

should equal zero. 

After transmitting and receiving every packet, a node 

expends a set amount of energy. As a result, this leftover 

energy significantly contributes to increased network 

lifespan and performance. In addition, in the discussion 

of few-shot learning, the fewer data samples the local 

model is formed by the local server, the more optimal the 

final time will be. Based on this, the energy of the sensors 

after sending images to the local server will be according 

to equation 3: 

1
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where  1

p

P NX C
 determines the energy left after the data 

packets are sent to the local model training server. 

 p

NX C  is the p-th sensor's energy loss. 

Equation 4 is also used to determine the local model 

training server's potential energy: 

1
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consequently, upon the receipt of data packets from 

sensors,  1

i

P localX C
 determines the energy kept in local 

model training server.  i

localX C  is the energy lost by the 

i-th local model training server. Furthermore, finally, we 

take the fitness function for data generation as equation 

5: 
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To calculate the fitness function related to the local 

model 
localOF  and the fitness function for traffic load 

loadOF , we used Xively. This Google IoT platform 

provides Cloud-based APIs to connect and develop IoT 

applications and takes advantage of the MQTT protocol 

to transfer data. In this situation, we want a model that is 

suitable for few-shot learning and does not have a heavy 

load on the network. For performance analysis, the data 

pertaining to load and the local model are input into 

Xively. Finally, the output of Xively is used to calculate 

equation 2. 

Calculating the distance between each sensor and the 

local server, as well as the distance between the local 

server and the central aggregation server, is the next step 

in the process of determining the fitness function. This 

distance is determined using equation 6, which can be 

found below: 
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where p i

N localD D  represents the distance between the p-

th node and the local server, i

local centralD D  represents 

the distance between the local server and the central 

aggregation server. Q also denotes the furthest distance 

over which each camera is capable of capturing photos. 

The last component in calculating the fitness function is 

related to the network delay. When calculating the delay 

associated with passing data, both the transmission delay 

(Tt) and the propagation delay (Tp) are taken into 

consideration as factors. The effectiveness of the network 

may be improved by reducing the amount of time that 

passes between the transmission of data packets from 

their origin to their destination. Equation 7 is a 

representation of the fitness function that is used to 

evaluate the latency: 

1

local

ii

delay
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K
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OF
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In equation 7, K is total number of sensors in each area 

and  
1

localT

ii
Max Local

  represents the delay. 
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4. Evaluation and Results 

In recent studies such as [29], the authors have proposed 

utilizing a Genetic Algorithm (GA) based optimization 

technique within the SMEC environment, referred to as 

GAME. This approach aims to determine the optimal 

solution by employing the GA optimization technique in 

the SMEC environment. To evaluate the effectiveness of 

the proposed method, a comprehensive analysis was 

conducted and compared with existing offloading 

policies using established benchmark datasets. The 

results of this analysis confirmed the superiority of the 

GA-based optimization technique within the SMEC 

environment. The critical drawbacks of using Genetic 

Algorithms (GA) for optimizing SMEC systems are slow 

convergence speed, parameter sensitivity, and a tendency 

to get stuck in local optima. GA can take a long time to 

find the optimal solution for complex SMEC systems, 

making it challenging to find the best solution in a timely 

manner. Additionally, GA is sensitive to the choice of 

parameters, such as mutation rate and crossover rate, 

which can significantly impact the optimization results 

and make the optimization process unpredictable. 

Finally, GA may get trapped in local optima, leading to 

sub-optimal results, which can reduce the effectiveness 

of the optimization process for SMEC systems. 

 In another study [30], researchers presented a framework 

for load balancing in fog computing environments called 

OLBA (Online Load Balancing Algorithm). This 

framework aims to enhance critical quality of service 

(QoS) metrics, including turnaround time, resource 

utilization, response time, and delay, by balancing the 

workload among fog devices. The framework utilizes a 

Particle Swarm Optimization (PSO) method to identify 

the optimal solution by first locating the local best and 

then comparing all the local bests to find the global best. 

This approach can be slow to converge to the optimal 

solution, resulting in more extended load balancing times 

and decreased system efficiency. It also requires careful 

tuning of its parameters and can be prone to get stuck in 

local minima, leading to suboptimal solutions. 

Additionally, PSO may not scale well to larger systems 

with high dynamic loads.  

However, because the environment is changed in this 

paper, it is not fair to campare previous results of PSO 

and GA in our environment. The proposed method is 

compared with PSO and GA algorithms in a new IoT 

environment based on federated learning architecture 

responsible for the face recognition task. 

To evaluate the proposed method, we simulated a 

network with 50 sensors in a system with an 8th 

generation Intel Core i7 processor and 16GB of RAM by 

MATLAB programming language. In the first test, 

according to Fig. 2, each sensor produced 50 images. In 

the first phase, sensors injected 500 images to the 

network. By comparing the optimization done by the 

NSGA II algorithm, our proposed method reached 

convergence with 423 images. At the same time, PSO 

and GA converged with 462 and 470 samples, 

respectively. In 1000 samples, our proposed method 

converged with 798 images, and PSO and GA algorithms 

converged with 857 and 895 images, respectively. By 

increasing the number of samples to 1500, NSGA II, 

PSO, and GA algorithms converged with 1104, 1215, and 

1377 images, respectively. Finally, with the number of 

2000 samples, the NSGA II algorithm could converge the 

final model with 330 and 453 fewer samples than the 

PSO and GA algorithms. Generally, our proposed 

algorithm converges to an optimal solution with a smaller 

number of data samples in each phase of the experiment. 

This is a crucial factor that influences the overall training 

time of the model. Upon comparison with traditional 

optimization algorithms such as GA and PSO, it can be 

inferred that the training time of the model is 

significantly reduced when using the proposed algorithm. 

This test shows that the proposed optimization algorithm 

can converge with a smaller number of samples than the 

state-of-the-art algorithms and execute few-shot learning 

optimally. 

 
Fig. 2. Samples needed to converge the model by the proposed 

algorithm compared to PSO and GA. 

 

In the second experiment, we assessed the recognition 

accuracy of our proposed algorithm, as depicted in Fig. 3, 

compared to the PSO and GA algorithms over a set 

period. During the first hour, our proposed method 

achieved an accuracy of 18%, while PSO and GA 

reached 20% and 21%, respectively. In the second hour, 

there was a noticeable improvement in the accuracy of 

our proposed method, with an increase of 34%, compared 

to a 25% and 18% improvement in PSO and GA, 

respectively. By the third hour, the recognition accuracy 

of our proposed method reached 82%, whereas PSO and 

GA had 74% and 78% accuracy, respectively. Finally, in 

the fourth hour, the accuracy of our proposed method and 

PSO remained unchanged, but GA saw a 1% 

improvement from the previous hour. These results 

demonstrate that the recognition accuracy of our 

proposed optimization method surpasses that of PSO and 

GA algorithms over the same period. 

The comprehensive outcomes of the evaluations 

demonstrate that our proposed method outperforms state-

of-the-art techniques in multiple ways. Firstly, by 

training the model with a limited number of samples, it 

reduces the computational burden and enables efficient 

few-shot learning. Secondly, within the same time frame, 

our method demonstrates an average recognition 

accuracy of 5.25% higher than PSO and 4.25% higher 

than GA for face recognition tasks. 

In the following evaluation, we studied the impact of 

individual parameters of the fitness function described in 

equation 2 on the convergence of the final model and 

compared the results with the aggregate state described 

in equation 2. As shown in Fig. 4, when using the 
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dataOF  as fitness function, the final model converged 

using 1870 data samples. Using the
disOF , 

delayOF
, 

localOF , and 
loadOF  parameters as single parameter 

fitness functions, the final model converged using 1645, 

1901, 1673, and 1477 data samples, respectively, out of 

the 2000 data samples entered into the network. 

However, when using the aggregate state of all the 

parameters described in equation 2 (
iOF ), the final 

model converged using only 1341 data samples. This 

evaluation suggests that the cumulative use of these 

parameters significantly improves the convergence of the 

final model with fewer data samples. The results of this 

evaluation highlight the importance of the parameters of 

the fitness function in determining the convergence of the 

final model and demonstrate the efficiency of the 

cumulative use of these parameters in reducing the 

number of required data samples. 

 

 
Fig. 3. Accuracy of the proposed method compared to PSO and 

GA over time. 

 

 
Fig. 4. Impact of each parameters of equation 2 in model 

convergence. 

5. Conclusion 

In a nutshell, this paper aims to describe a novel approach 

to face recognition in IoT networks. In the suggested 

approach, reducing the time spent on training while 

simultaneously improving recognition accuracy was two 

of the goals. We utilized the NSGA II optimization 

algorithm in order to accomplish these objectives. By 

defining the first fitness function, we endeavored to select 

the most appropriate local parameter to aggregate the 

global model. For the second objective, the second fitness 

function was defined by considering the distance 

between the local server and central server and cameras, 

the amount of energy used, the amount of traffic load, and 

how practical the local models are. This was done while 

keeping in mind the principle that the more time spent 

training the model, the more energy consumed. Our 

system is built mainly on federated learning, which 

creates a local model by considering data security and 

using a deep learning algorithm. This is the primary 

foundation on which our system is based. A global model 

is created by performing a combination of local models 

obtained from various local servers. This model is then 

sent to all of the local servers. 

It is possible to implement few-shot learning in the most 

effective manner using the federated learning method and 

aggregating models from all locations. 

In addition to the evaluation of the proposed approach in 

multiservice networks, future work could also focus on 

exploring the scalability of the system and its 

performance under different network conditions and 

configurations. Additionally, integrating additional data 

sources and considering alternative optimization 

algorithms could further improve the recognition 

accuracy and energy efficiency of the system. 

Furthermore, incorporating user privacy concerns and 

testing the robustness of the system to attacks and data 

tampering can also be a part of the future work. Overall, 

the proposed approach in this paper opens up avenues for 

further research and improvement in the field of face 

recognition in IoT networks. 
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