تعداد نشریات | 44 |
تعداد شمارهها | 1,298 |
تعداد مقالات | 15,883 |
تعداد مشاهده مقاله | 52,116,584 |
تعداد دریافت فایل اصل مقاله | 14,887,932 |
ارزیابی کارایی مواد فعال سطحی SDS و Tween 20 بر پالایش خاک رسی آلوده به گازوئیل با بهرهگیری از فرآیند الکتروکینتیک و تعیین مقاومت فشاری خاک رس پس از حذف آلاینده | ||
نشریه مهندسی عمران و محیط زیست دانشگاه تبریز | ||
مقاله 16، دوره 53.4، شماره 113، اسفند 1402، صفحه 179-190 اصل مقاله (818.51 K) | ||
نوع مقاله: مقاله کامل پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/ceej.2023.51836.2152 | ||
نویسندگان | ||
علی طاهریان1؛ مریم یزدی* 1؛ ایمان دانایی2؛ امیرعلی زاد1 | ||
1گروه مهندسی عمران، دانشکده مهندسی عمران و منابع زمین، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران | ||
2گروه مهندسی بازرسی فنی، دانشکده نفت آبادان، دانشگاه صنعت نفت، آبادان | ||
چکیده | ||
آلودگی خاک های حاوی هیدروکربن های نفتی یکی از مهمترین چالش های زیست محیطی می باشد، ازاینرو لازم است تا در مورد پاکسازی مواد هیدروکربنی از جمله گازوئیل در مناطق نفت خیز تدابیری صورت بگیرد، جهت پاکسازی این ترکیبات از خاک راه کارهای مختلف از جمله استفاده از فرآیند الکتروکینتیک به کار می رود. این روش برای پاکسازی خاک های ریزدانه خصوصاً رسی مؤثر می باشد، در این تحقیق، پاکسازی خاک رسی آلوده به گازوئیل به روش الکتروکینتیک در حضور مواد فعال سطحی (Surfactant) SDS (Sodium Dodecyl Sulfate) و Tween 20 مورد ارزیابی قرار می گیرد و اثر کنترل pH در کاتولیت و آنولیت بر فرآیند اصلاح الکتروکینتیکی (Electrokinetic) خاک رسی مورد ارزیابی قرار گرفته است. نتایج فرآیند نشان می دهد که در غیاب ماده فعال سطحی روش الکتروکینتیک راندمان بسیار کم در پاکسازی گازوئیل از خاک رس دارد آنگاه در حضور ماده فعال سطحی بازدهی حذف افزایش چشمگیری دارد، با کنترل pH در کاتولیت و آنولیت و افزایش غلظت ماده فعال سطحی بازدهی حذف گازوئیل از خاک افزایش می یابد. با کاربرد Tween 20 کمترین میزان پاکسازی در غلظت 05/0% برابر با 18% به دست آمده است این در حالی است که SDS توانست حدوداً 49% از گازوئیل را در غلظت 15/0% ماده فعال سطحی حذف کند، در ادامه تحقیق آزمایش تک محوری جهت تعیین مقاومت فشاری محصورنشده نمونه خاک انجام گرفته است که نشان می دهد فرآیند پاکسازی سبب افزایش مقاومت فشاری خاک می گردد. | ||
کلیدواژهها | ||
الکتروکینتیک؛ خاک رس؛ گازوئیل؛ کنترلpH؛ ماده فعال سطحی؛ مقاومت فشاری؛ الکترواسموز؛ ژئوتکنیک | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Acar YB, Alshawabkeh AN, “Principles of electrokinetic remediation”, Environmental Science and Technology, 1993, 27 (13), 2638-2647. https://doi.org/10.1021/es00049a002 ASTM D 2166, Standard Test Method for The uniaxial test, 2010. https://doi.org/10.1520/D2166-06 ASTM D 422, Standard Test Method for Hydrometric test, 2007. https://doi.org/10.1520/D0422-63R07 ASTM D 4318-93, Standard Test Method for Atterberg test, 2020. https://doi.org/10.1520/ D4318-17 ASTM D 698, Standard Test Method for Compaction test, 2000. https://doi.org/10.1520/D0698-12 Bahemmat M, Farahbakhsh M, Kianirad M, “Electrokinetically enhanced remediation of contaminated soil with Ni by use of humic acid and fulvic acid”, In: Proceedings of 12th Iranian Soil Science Congress, 3-8 September, Tabriz University, Tabriz, Iran, 2011. https:// doi.org/10.22059/ijswr.2012.24353 Barba S, Villaseñor J, Rodrigo MA, Cañizares P, “Effect of the polarity reversal frequency in the electrokinetic-biological remediation of oxyfluorfen polluted soil”, Chemosphere, 2017. https://doi.org/10.1016/j.chemosphere.2017.03.002 Berg MS, Webester MT, “Release of petroleum hydrocarcon from bioremdiationed soil”, Journal of Soil Contamination, 1998, 7, 675-695. https://doi.org/10.1061/(ASCE)1090025X(2001)5:2(78) Boulakradeche OM, “Enhancement of electrokinetic remediation of lead and copper contaminated soil by combination of multiple modified electrolyte conditioning techniques”, School Laboratory of Hydrometallurgy and Molecular Inorganic Chemistry, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene, Algeria, Environmental Engineering Research, 2022, 27 (4), 210167. https:// doi.org/10.4491/eer.2021.167 Cameselle C, “Enhanced electrokinetic remediation for the removal of heavy metals from contaminated soils”, Department of Chemical Engineering, BiotecnIA, University of Vigo, 36310 Vigo, Spain, Applied. Sciences. 2021, 11, 179. https://doi.org/10.3390/app11041799 Eykholt GR, Daniel DE, “Impact of system chemistry on electroosmosis in contaminated soil”, Journal of Geotechnical and Geoenvironmental Engineering, 1994, 120 (5), 797-815. https://doi.org/10.1061/(ASCE)07339410(1994)120:5(797) Farahbakhsh M, “The effect of PH on electrokinetic modification of a microstructure contaminated with crude oil”, Iranian Soil and Water Research, Volume 49, Number 3, August and September 2017, 483-491. https://doi.org/10.22059/ijswr.2017.38715.666902 Gidudu B, “Application of biosurfactants and pulsating electrode configurations as potential enhancers for electrokinetic remediation of petrochemical contaminated soil”, Department of Chemical Engineering, University of Pretori, 13 July 2020. https://doi.org/10.3390/su12145613 Hamidi A, Karimi AH, “Effect of phytoremediation on compression characteristics of silty clayey sand contaminated with crude oil”, International Journal of Civil Engineering, 2021, 19 (8), 973-995. https://doi.org/10.1080/15320383.2021.1900065 Hanaei F, Sarmadi MS, Rezaee M, Rahmani A, “Experimental investigation of the effects of gas oil and benzene on the geotechnical properties of sandy soils”, Innovative Infrastructure Solutions, 2021, 6 (2), 1-8. https://doi.org/10.31272/jeasd.27.3.1 Hosseini A, Hajiani Boushehrian A, “Laboratory and numerical study of the behavior of circular footing resting on sandy soils contaminated with oil under cyclic loading”, Scientia Iranica, 2019, 26 (6), 3219-3232. https://doi.org/10.24200/sci.2018.5427.1267 Joukar A, Boushehrian AH, “Experimental study of strip footings rested on kerosene oil-and gas oil-contaminated sand slopes”, Iranian Journal of Science and Technology-Transactions of Civil Engineering, 2019, 44 (1), 209-217. https://doi.org/10.22107/jpg.2023.417661.1210 Khataei B, “Removal of crude oil from soil using electrokinetic method improved with surfactants”, 2016, 33-2 (1-2), 107-114. https://doi.org/10.24200/j30.2017.4544 Lambet P, Fingas M, Goldthorp M, “An Evaluation of field total petroleum hydrocarbon-contaminated soil by composting in biopiles”, Environment Pollution. 2001, 409-411. https://doi.org/10.22059/ijswr.2017.38715.666902 Lisbeth M, Thomas H, Pernille E, Jensen Gunvor M, “Electrokinetics applied in remediation of subsurface soil contaminated with chlorinated ethenes A review”, Chemosphere 235, 2019, 113-125. https://doi.org/10.1016/j.chemosphere.2019.06.075 López-Vizcaíno R, “Calcite buffer effects in electrokinetic remediation of clopyralid-polluted soils”, et al Electrochimica Acta, 225, 2017, 93-104. https://doi.org/10.1016/j.seppur.2018.11.034 Nasiri A, “The effect of time and ph on improving the effciency of the electrokineticmethod for remediation of the soil contaminated by chromium”, M.Sc Student, Dept. of Mining, Faculty of Engineering, Tarbiat Modares University, Tehran, Iran , Journal of Mineral Resources Engineering, 21 Apr 2019. https://doi.org/10.30479/jmre.2019.9945.1213 Pamukcu S, Wittle JK, “Electrokinetically enhanced in situ soil decontamination. In, D. L. Wise and D. J. Trantolo (Eds.) Remediation of Hazardous Waste Contaminated Soils”, (p.p. 245-298), Marcel Dekker, New York, 1994. https://doi.org/10.1061/(ASCE)07339410(1996)122:8(666) Pamukcu S, Weeks A, Wittle JK. “Electrochemical separation and stabilization of selected inorganic species in porous media”, Journal of Hazardous Materials, 1997, 55, 305-318, http://dx.doi.org/10.1201/9780203740880-13 Reddy KR, Saichek RE, “Enhanced electrokinetic removal of phenanthrene from clay soil by periodic electric potential application”, Journal of Environmental Science and Health part A Toxic/Hazardous Substances & Environmental Engineering, 2004, 39 (5), 1189-1212. http://doi.org/10.1081/ESE-120030326 Reddy KR, Saichek RE, “Effect of soil type on Electrokinetic removal of phenanthrene using surfactants and cosolvents”, Journal of Environmental Engineering, 2003, 129 (4), 336-346. https://doi.org/10.1061/(ASCE)07339372(2003)129:4(336) Reilley KA, Banks MK, Schwab AP, “Organic chemicals in the environment: dissipation of polycyclic aromatic hydrocarbons in the rhizosphere”, Journal Environmental Quality, 1996, 25, 212-219. https://doi.org/10.2134/jeq1996.00472425002500020002x Saichek RE, Reddy KR, “Electrokinetically enhanced remediation of hydrophobic organic compounds in soils: A review”, Critical Reviews in Environmental Science and Technology, 2005, 35 (2), 115-119. http://dx.doi.org/10.1080/10643380590900237 Saichek RE, Reddy KR, “Effect of Ph control at the anode for the electrokinetic removal of phenanthrene from kaolin soil”, Chemosphere, 2003, 51, 273-287. https://doi.org/10.1061/(ASCE)EE.19437870.0000203 Saini A, Bekele DN, Chadalavada S, Fang C, Naidu R, “Areview of electrokinetically enhanced bioremediation technologies for PHs”, Journal of Environmental Sciences, 2020, 88, 31-45. https://10.1016/j.jes.2019.08.010 Schwab AP, SU J, Wetzel S, Pekarek S, Banks MK, “Extraction of petroleum hydrocarbons from soil by mechanical shaking”, Environmental Science and Technology, 1999, 331940-1945. https://doi.org/10.1021/es9809758 Seyed Razavi SN, Khoda Dadi A, Ganji doust H, “Removal of crude oil from soil by biosurfactant treatment of soil contarninated with crude-oil using biosurfactants”, 2011, 37 (60), 107-116. https://doi.org/ 10.5897/JPGE11.044 Shapiro AP, Probstein RF, “Removal of contaminant from saturated clay by electroosmosis”, Environmental Science and Technology, 1993, 27 (2), 283-291. http://dx.doi.org/10.1021/es00039a007 Sun Y, “In situ electrokinetic (EK) remediation of the total and plant available cadmium (Cd) in paddy agricultural soil using low voltage gradients at pilot and full scales”, Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, University of Helsinki, Niemenkatu 73, FI-15140 Lahti, Finland, Science of the Total Environment, 785, 2021, 147277. https://doi.org/10.1016/j.scitotenv.2021.147277 USEPA, “A resource for MGP site characterization and remediation”, EPA/542-R-00- 005, Washington, DC, 2000. https://www.epa.gov/sites/default/files/201508/documents/mgp_chap1-4a.pdf Ukleja J, “Stabilization of landslides sliding layer using electrokinetic phenomena and vacuum treatment”, Faculty of Civil Engineering and Architecture, Geosciences, 25 July 2020. https://doi.org/10.3390/geosciences10080284 Vaishnavi J, “Biosurfactant mediated bioelectrokinetic remediation of diesel contaminated environment”, Chemosphere, 2021, 264 (1), 128377. https://doi.org/10.1016/j.chemosphere.2020.128377 Vocciante M, “Sustainability in electrokinetic remediation processes: a critical analysis”, Department of Chemistry and Industrial Chemistry, University of Genova, 16146 Genova, Italy, Sustainability 14 January 2021. https://doi.org/10.3390/su13020770 Yongsong Ma, Xi Li Hongmin Mao, Bing Wang B, Peijie Wang P, “Remediation of hydrocarbon-heavy metal co-contaminated soil by electrokinetics combined with biostimulation”, Chemical Engineering Journal, 2018. https://doi.org/10.1016/j.cej.2018.07.131 Zhou JL, “Effective remediation of heavy metals in contaminated soil by electrokinetic technology incorporating reactive filter media”, Science of The Total Environment, 2021, 794, 148668. https://doi.org/10.1016/j.scitotenv.2021.148668 | ||
آمار تعداد مشاهده مقاله: 462 تعداد دریافت فایل اصل مقاله: 181 |