- [1] G. M. Amiraliyev, I. G. Amiraliyeva, and K. Mustafa, A numerical treatment for singularly perturbed differential equations with integral boundary condition, Appl. Math. Comput., 185 (2007), 574–582.
- [2] A. R. Ansari, S. A. Bakr, and G. I. Shishkin, A parameter-robust finite difference method for singularly perturbed delay parabolic partial differential equations, J. Comput. Appl. Math., 205 (2007), 552–566.
- [3] E. BM. Bashier and K. C. Patidar, A novel fitted operator finite difference method for a singularly perturbed delay parabolic partial differential equation, Appl. Math. Comput., 217 (2011), 4728–4739.
- [4] A. Das and S. Natesan, Second-order uniformly convergent numerical method for singularly perturbed delay par- abolic partial differential equations, Int. J. Comput. Math, 95(2018), 490–510.
- [5] H. G. Debela and G. F. Duressa, Exponentially fitted finite difference method for singularly perturbed delay differential equations with integral boundary condition, Int. j. eng. appl. sci., 11 (2019), 476–493.
- [6] H .G. Debela and G. F. Duressa, Accelerated fitted operator finite difference method for singularly perturbed delay differential equations with non-local boundary condition, J. Egyptian Math. Soc., em 28 (2020), 1–16.
- [7] H. G. Debela and G. F. Duressa, Uniformly convergent numerical method for singularly perturbed convection- diffusion type problems with nonlocal boundary condition, Int J Numer Methods Fluids, 92 (2020), 1914–1926.
- [8] H. G. Debela and G. F. Duressa, Fitted operator finite difference method for singularly perturbed differential equations with integral boundary condition, Kragujev. J. Math., 47 (2023), 637–651.
- [9] W. T. Gobena and G. F. Duressa, Parameter uniform numerical methods for singularly perturbed delay parabolic differential equations with non-local boundary condition, Int. J. Eng. Sci. Technol., 13 (2021), 57-71.
- [10] W. T. Gobena and G. F. Duressa, Fitted operator average finite difference method for singularly perturbed delay parabolic reaction diffusion problems with non-local boundary conditions, Tamkang J. Math., (2022).
- [11] L. Govindarao and J. Mohapatra, Numerical analysis and simulation of delay parabolic partial differential equation involving a small parameter, Engrg. Comput., 37 (2019), 289-312.
- [12] L. Govindarao, J. Mohapatra, and A. Das, A fourth-order numerical scheme for singularly perturbed delay para- bolic problem arising in population dynamics, J. Appl. Math. Comput., 63 (2020), 171–195.
- [13] W. S. Hailu and G. F. Duressa, Parameter-uniform cubic spline method for singularly perturbed parabolic differ- ential equation with large negative shift and integral boundary condition, Res. Math., 9 (2022), 2151080.
- [14] D. Kumar and P. Kumari, A parameter-uniform collocation scheme for singularly perturbed delay problems with integral boundary condition, J. Appl. Math. Comput., 63(2020), 813–828.
- [15] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. UralCeva, Linear and quasilinear equations of parabolic type, translations of mathematical monographs, Amer. Math. Soc. ( N.S. ), 23(1968), Providence RI, (1968).
- [16] M. Manikandan, N. Shivaranjani, J. J. H. Miller, and S. Valarmathi, A parameter-uniform numerical method for a boundary value problem for a singularly perturbed delay differential equation, Adv. Appl. Math., Springer, 2014 (2014), 71–88.
- [17] J. J. H. Miller, E. ORiordan, G. I. Shishkin, and L. P. Shishkina, Fitted mesh methods for problems with parabolic boundary layers, In Mathematical Proceedings of the Royal Irish Academy, JSTOR, (1998), 173–190.
- [18] E. Sekar and A. Tamilselvan, Finite difference scheme for third order singularly perturbed delay differential equa- tion of convection diffusion type with integral boundary condition, J. Appl. Math. Comput., 61 (3019), 72–86.
- [19] E. Sekar and A. Tamilselvan, Finite difference scheme for singularly perturbed system of delay differential equations with integral boundary conditions, J-KSIAM., 22 (2018), 201–215.
- [20] E. Sekar and A. Tamilselvan, Singularly perturbed delay differential equations of convectiondiffusion type with integral boundary condition, J. Appl. Math. Comput., 9 (2019), 701–722.
- [21] E. Sekar and A. Tamilselvan, Third order singularly perturbed delay differential equation of reaction diffusion type with integral boundary condition, J. Appl. Math. Comput. Mech., 18 (2019), 99-110.
- [22] E. Sekar, A. Tamilselvan, R. Vadivel, N. Gunasekaran, H. Zhu, J. Cao, and X. Li, Finite difference scheme for singularly perturbed reaction diffusion problem of partial delay differential equation with nonlocal boundary condition, Adv. Difference Equ.,151 (2021), 1-20.
- [23] P. A. Selvi and N. Ramanujam, A parameter uniform difference scheme for singularly perturbed parabolic delay differential equation with robin type boundary condition, Appl. Math. Comput., 296 (2017), 101–115.
- [24] G. I. Shishkin, Approximation of the solutions of singularly perturbed boundary-value problems with a parabolic boundary layer. USSR, Comput. Math. Math. Phys., 29 (1989), 1–10.
- [25] M. M. Woldaregay, W. T. Aniley, and G. F. Duressa, Novel numerical scheme for singularly perturbed time delay convection-diffusion equation, Adv. Math. Phys., 2021 (2021).
|