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Abstract

..

We aim at presenting results including analytical solutions to linear fully fuzzy Caputo-Fabrizio fractional differ-
ential equations. In such linear equations, the coefficients are fuzzy numbers and, as a useful approach, the cross
product has been considered as a multiplication between the fuzzy data. This approach plays an essential role in
simplifying of computation of analytical solutions of linear fully fuzzy problems. The obtained results have been

applied for deriving explicit solutions of linear Caputo-Fabrizio differential equations with fuzzy coefficients and
of the corresponding initial-value problems. Some of the topics which are needed for the results of this study from
the point of view of the cross product of fuzzy numbers have been explained in detail. We illustrate our technique
and compare the effect of uncertainty of the coefficients and initial value on the related solutions.
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1. Introduction

Differential equations of fractional order appear more and more frequently in various research areas and engineering
applications. Some applications of fractional differential equations are appeared in the field of chemistry, computer
networking, control theory, complex medium with electrodynamics, aerodynamics, image processing phenomenon,
polymer rheology, signal, etc., [8, 9, 29]. Theory of fractional differential equations is making use of the derivatives
of fractional orders such as Riemann-Liouville, Caputo, Gtünwall-Letnikev, etc. Recently in [18], Caputo-Fabrizio
fractional derivative has been presented in where the singular kernel has been replaced with a nonsingular kernel. Many
studies have been done by several authors on the theory of Caputo-Fabrizio differential equations [13, 21, 22, 26, 31].
The advantages of the large number of fractional derivatives become apparent in different models of mechanical and
electrical properties of real materials which provide the best reflection of the behavior of systems.

The idea of arithmetic operations on fuzzy numbers, a spacial kind of fuzzy subsets with extra conditions, are mainly
based on the Zadeh’s extension principle. It is well known that the calculation based on the Zadeh’s product operation
depends on the shape of the fuzzy numbers are complicated. Considering the extension principle-based product on
the same kind of fuzzy numbers, the shape of the resulting fuzzy number is not preserved. In many situations, these
problems are solved by redefining the product operation named as the cross product [15].

As soon as the idea of a function with fuzzy number values was born, it also raised the idea of fuzzy ordinary,
partial, and fractional derivatives and consequently fuzzy differential equations [2–4, 7, 10–12, 16, 17, 30]. Many of
the fuzzy differential equations that describe real natural phenomena are fuzzy linear differential equations. Such
fuzzy linear differential equations can admit crisp or fuzzy coefficients. There are different approaches to interpreting
the concept of a solution to linear fuzzy differential equations with crisp and fuzzy coefficients [5, 6, 23–25, 27, 28].
Methods, described in detail in [23–25, 27, 28] for linear fuzzy differential equations with crisp coefficients, do not work
in the case of fuzzy coefficients. There are some studies in this fields such that the concept of the product of a fuzzy
number and unknown function is the Zadeh’s product [19]. However, this approach is complicated in computational
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point of view. On the other hand, there are some numerical methods described in [20], which allow solutions of linear
differential equations with fuzzy coefficients but they work effectively only for numerical solutions of homogenous fuzzy
differential equations.

The authors in [5, 6] apply a method which is free of these disadvantages and suitable for a wide class of initial value
problems for differential equations. The method has been applied for linear fuzzy partial and ordinary differential
equations and is based on the cross product of fuzzy numbers.

As we know, linear fuzzy fractional differential equations have not been considered with fuzzy coefficients until now
and effective general methods for solving them cannot be found even in the most useful research on fuzzy fractional
differential equations. In [1], fuzzy linear Caputo-Fabrizio fractional differential equations with crisp coefficient have
been investigated. Method, described in detail in [1] for linear fuzzy Caputo-Fabrizio fractional differential equations
with crisp coefficients, does not work in the case of fuzzy coefficients and an effective and easy-to-use approach for
solving such equations is needed.

In this contribution, we apply the approach based on the cross product for linear fully fuzzy Caputo-Fabrizio
fractional differential equations with fuzzy initial values. We investigate all of analytical solutions considering all of the
possible options on the data of the problem. We hope that this method could be a useful method for obtaining solutions
of different applied problems appearing in physics, chemistry, electrochemistry, engineering, etc. The main objective of
this paper is to complement the contents of the papers mentioned above. We aim to present, in a systematic manner,
results including the cross product and explicit solutions of linear fully fuzzy Caputo-Fabrizio differential equations.
This paper consists of four sections. Section 2 (Preliminaries) provides some basic definitions and properties from
such topics of fuzzy numbers, arithmetic operations on them, the cross product of fuzzy numbers, calculus of fuzzy
number-valued functions, and so on. The usages of the cross product in calculus of differential and integral has indeed
motivated a major part of section 2. Section 3, Fuzzy CF Fractional Derivative and Integral, includes the definitions
and some potentially useful properties of fuzzy Caputo-Fabrizio fractional integral and fractional derivative. Sections
2 and 3 are meant to prepare the reader to understand the various mathematical tools and techniques which are
applied in the later sections of this paper. The explicit solutions of the fully fuzzy initial value problem of linear
Caputo-Fabrizio differential equation are derived in section 4. At the end of this paper, for the convenience of the
readers interested in further investigations on these and other closely-related topics, we include a rather large and
up-to-date references.

2. Preliminary

In this section, we extended the cross product of fuzzy numbers in which the core of them consists of one element.
So, we present new results and their proof in the context of this section.

Fuzzy numbers are spacial kind of fuzzy sets u : R → [0, 1] such that they are normal, fuzzy convex, upper semi-
continuous, and compactly supported. The α-level of fuzzy number u is defined by (u)α = {t ∈ R : u(t) ≥ α, 0 < α ≤ 1}
i.e. (u)α = [u−

α , u
+
α ]. (u)1 is called the core of the fuzzy number and (u)0 = cl{t ∈ R : u(t) ≥ 0} is called the support

of the fuzzy number. For 0 ≤ α ≤ 1, the length of α-level set is denoted by len(u)α = u+
α − u−

α . The space of fuzzy
numbers is denoted by RF . Let u, v ∈ RF , 0 ≤ α ≤ 1 and λ ∈ R. The triangular and the space of triangular fuzzy
numbers are denoted by u =< ul, uc, ur > for which ul ≤ uc ≤ ur and Rτ , respectively.

The following definitions about arithmetic operations on RF are based on Zadeh’s extension principle [14].

• Addition:

(u+ v)α = {x+ y|x ∈ (u)α, y ∈ (v)α} = (u)α + (v)α.

• Scalar product:

(λu)α = {λx|x ∈ (u)α} = λ(u)α.

• Difference:

(u− v)α = (u)α + (−1)(v)α.
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• Product:

(uv)α =
[
min{u−

α v
−
α , u

−
α v

+
α , u

+
αv

−
α , u

+
αv

+
α },max{u−

α v
−
α , u

−
α v

+
α , u

+
αv

−
α , u

+
αv

+
α }
]
.

The following definitions about the difference of fuzzy numbers are not based on Zadeh’s extension principle.

Definition 2.1. [14] Let u and v be two fuzzy numbers. If there exists a fuzzy number z such that z + v = u. Then
z is called Hukuhara difference of u and v and is denoted by z = u⊖ v and we have

(z)α = [u−
α − v−α , u

+
α − v+α ].

Definition 2.2. [14] Let u, v ∈ RF , the generalized Hukuhara difference (gH-difference for short) is the fuzzy number
w, if it exists, such that

u⊖gH v = w ⇔
{

(i) u = v + w,
or (ii) v = u+ (−1)w.

Lemma 2.3. Let u, v, w, z ∈ RF and a ∈ R. Then the following assertions are true

(au)⊖ (av) = a(u⊖ v), (u⊖ v) + (w ⊖ z) = (u+ w)⊖ (v + z), u⊖ (v ⊖ w) = (u+ w)⊖ v,

u+ (v ⊖ w) = (u+ v)⊖ w, u⊖ (v + w) = (u⊖ v)⊖ w,

provided the above H-differences exist.

Proposition 2.4. Let u ∈ RF and a, b ∈ R.
(1) If ab ≥ 0, then (a+ b)u = au+ bu.
(2) If ab ≤ 0, then (a+ b)u = au⊖gH (−1)bu.

Proof. In fact, this proposition is a generalized version of Case 1 presented in [14]. In order to prove Case 2, we let
a, b ∈ R and ab ≤ 0. There are two choices for the signs of a and b. Firstly, we assume a ≥ 0 and b ≤ 0. Therefore,
we have a+ b ≥ 0 or a+ b ≤ 0. If a+ b ≤ 0, then from Case 1 we have

bu = (a+ b− a)u = (a+ b)u+ (−a)u.

Hence, we have

(a+ b)u = bu⊖ (−1)au. (2.1)

Similarly, if a+ b ≥ 0, then from Case 1 we have

(a+ b)u = au⊖ (−1)bu. (2.2)

From (2.1) and (2.2), we deduce

(a+ b)u = au⊖gH (−1)bu.

Secondly, we let a ≤ 0 and b ≥ 0. Therefore, we have a+ b ≥ 0 or a+ b ≤ 0. If a+ b ≤ 0, then from Case 1 we have

au = (a+ b− b)u = (a+ b)u+ (−b)u.

Then, we have

(a+ b)u = au⊖ (−1)bu. (2.3)

Similarly, if a+ b ≥ 0, then from Case 1 we have

(a+ b)u = bu⊖ (−1)au. (2.4)

From (2.3) and (2.4), we can deduce

(a+ b)u = au⊖gH (−1)bu.

�
Definition 2.5. Let u ∈ RF such that the Core(u) consists of exactly one element i.e. (u)1 = {uc}. u is called
non-negative (≽ 0) or non-positive (≼ 0) if we have uc ≥ 0 or uc ≤ 0. The set of non-negative (or non-positive) fuzzy
numbers is denoted by R+

F (R−
F ).
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The following definition is a spacial case of Definition 5.13 in [14]. In fact in this paper, we have used the fuzzy
numbers with singleton core.

Definition 2.6. Let u, v ∈ R+
F and α ∈ [0, 1]. The cross product of u and v is denoted by w = u ⊙ v and defined as

follows

(w)α = [u−
α vc + ucv

−
α − ucvc, u

+
αvc + ucv

+
α − ucvc].

Definition 2.7. Let u, v ∈ R+
F (R

−
F ). We say u ≽ v, if uc ≥ vc. Also, we say u ≼ v, if uc ≤ vc.

Proposition 2.8. Let u, v, w ∈ R+
F (R

−
F ).

(1) If u ≽ 0 and v ≼ 0, then
u⊙ v = −

(
u⊙ (−v)

)
,

(2) If u ≼ 0 and v ≽ 0, then
u⊙ v = −

(
(−u)⊙ v

)
,

(3) If u, v ≼ 0, then
u⊙ v = (−u)⊙ (−v),

(4) If either u ≽ v ≽ 0 or u ≼ v ≼ 0, then

(u⊖ v)⊙ w = u⊙ w ⊖ v ⊙ w

(5) If either v ≽ u ≽ 0 or v ≼ u ≼ 0, then

(u⊖ v)⊙ w =
(
v ⊙ w + (w − w)⊙ (u⊖ v)

)
⊖ v ⊙ w.

(6) If either u, v ≽ 0 or u, v ≼ 0, then

(u+ v)⊙ w = u⊙ w + v ⊙ w,

(7) If u, u+ v ≽ 0 and v ≼ 0 or u, u+ v ≼ 0 and v ≽ 0, we have

(u+ v)⊙ w =
(
u⊙ w + v ⊙ w

)
⊖ (w − w)⊙ v,

provided the involving H-differences exist.

Proof. Case 4: If we assume u ≽ v ≽ 0, then u⊖ v ≽ 0. We assume w ≽ 0. Hence, we have(
(u⊖ v)⊙ w

)
α
= [(uc − vc)w

−
α + (u−

α − v−α )wc − (uc − vc)wc, (uc − vc)w
+
α + (u+

α − v+α )wc − (uc − vc)wc]

= [
(
ucw

−
α +

(
u−
α − uc

)
wc
)
−
(
vcw

−
α + (v−α − vc)wc

)
,
(
ucw

+
α +

(
u+
α − uc

)
wc
)
−
(
vcw

+
α +

(
v+α − vc

)
wc
)
]

=
(
u⊙ w

)
α
⊖
(
v ⊙ w

)
α
.

We assume w ≼ 0. Then, we get(
(u⊖ v)⊙ w

)
α
= [(uc − vc)w

−
α + (u+

α − v+α )wc − (uc − vc)wc, (uc − vc)w
+
α + (u−

α − v−α )wc − (uc − vc)wc]

= [
(
ucw

−
α +

(
u+
α − uc

)
wc
)
−
(
vcw

−
α +

(
v+α − vc

)
wc
)
,
(
ucw

+
α +

(
u−
α − uc

)
wc
)
−
(
vcw

+
α +

(
v−α − vc

)
wc
)
]

= (u⊙ w)α ⊖ (v ⊙ w)α .

The proof of other states are similar.
Case 5: Let 0 ≼ u ≼ v. Hence, u⊖ v ≼ 0. We assume w ≽ 0. Thus, we get(

(u⊖ v)⊙ w
)
α
=
[
(uc − vc)(w

+
α − wc) + (u−

α − v−α )wc, (uc − vc)(w
−
α − wc) + (u+

α − v+α )wc
]

=
[
(uc − vc)(w

−
α − wc) + (u−

α − v−α )wc, (uc − vc)(w
+
α − wc) + (u+

α − v+α )wc
]

+ [len(w)α(uc − vc),−len(w)α(uc − vc) ]

=
(
u⊙ w + (w − w)⊙ (u⊖ v)

)
α
⊖ (v ⊙ w)α.

We suppose w ≼ 0. Then, we have(
(u⊖ v)⊙ w

)
α
=
[
(uc − vc)(w

+
α − wc) + (u+

α − v+α )wc, (uc − vc)(w
−
α − wc) + (u−

α − v−α )wc
]

=
[
(uc − vc)(w

−
α − wc) + (u+

α − v+α )wc, (uc − vc)(w
+
α − wc) + (u−

α − v−α )wc
]

+ [len(w)α(uc − vc),−len(w)α(uc − vc) ]

=
(
u⊙ w + (w − w)⊙ (u⊖ v)

)
α
⊖ (v ⊙ w)α.
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The proof of other states are similar. �

Lemma 2.9. If u, v, w ∈ R+
F (R

−
F ), then

(1) (−u)⊙ v = u⊙ (−v) = − (u⊙ v).
(2) u⊙ v = v ⊙ u.
(3) (u⊙ v)⊙ w = u⊙ (v ⊙ w).

Proof. The proof immediately follows from Proposition 2.8. �

Definition 2.10. [14] The Hausdorff distance of fuzzy numbers is as D∞ : RF × RF → R+ defined by

D∞(u, v) = sup
α∈[0,1]

max{| u−
α − v−α |, | u+

α − v+α |},

where (u)α = [u−
α , u

+
α ] and (v)α = [v−α , v

+
α ]. The following properties of the Hausdorff metric are well-known

(1) If u, v ∈ RF and a ∈ R, then
D∞(au, av) =| a | D∞(u, v).

(2) If u, v, w ∈ RF , then

D∞(u+ w, v + w) = D∞(u, v).

(3) If u, v, w, z ∈ RF , then

D∞(u+ v, w + z) ≤ D∞(u,w) +D∞(v, z).

(4) If u, v, w, z ∈ RF and the H-differences u⊖ v and w ⊖ z exist, then

D∞(u⊖ v, w ⊖ z) ≤ D∞(u,w) +D∞(v, z).

Proposition 2.11. Let k, u, v ∈ R+
F (R

−
F ). Then

D∞(k ⊙ u, k ⊙ v) ≤ KD∞(u, v),

where K =
(
| kc | +diam(k)

)
.

Proof. Since k, u, v ∈ R+
F (R

−
F ), there are several states for the sign of k, u, and v. We assume k, u, v ∈ R+

F . From
Definition 2.10, we have

D∞(k ⊙ u, k ⊙ v) = sup
α∈[0,1]

max{| (k−α − kc)(uc − vc) + kc(u
−
α − v−α ) | , | (k+α − kc)(uc − vc) + kc(u

+
α − v+α ) |}

≤ sup
α∈[0,1]

max{| (k−α − kc)(uc − vc) | , | (k+α − kc)(uc − vc) |}+ sup
α∈[0,1]

max{| kc(u−
α − v−α ) | , | kc(u+

α − v+α ) |}

≤| uc − vc | sup
α∈[0,1]

max{| k−α − kc |, | k+α − kc |}+ | kc | D∞(u, v)

≤
(
| kc | +diam(k)

)
D∞(u, v) = KD∞(u, v).

We assume k, u ∈ R+
F and v ∈ R−

F . Therefore from Definition 2.10, we have

D∞(k ⊙ u, k ⊙ v) = sup
α∈[0,1]

max{| (k−
α − kc)uc − (k+

α − kc)vc + kc(u
−
α − v−α ) | , | (k+

α − kc)uc − (k−
α − kc)vc + kc(u

+
α − v+α ) |}

(2.5)

≤ sup
α∈[0,1]

max{| kc(u−
α − v−α ) | , | kc(u+

α − v+α ) |}

+ sup
α∈[0,1]

max{| (k−
α − kc)uc − (k+

α − kc)vc |, | (k+
α − kc)uc − (k−

α − kc)vc |}

≤| kc | sup
α∈[0,1]

max{| u−
α − v−α | , | u+

α − v+α |}+ diam(k) | uc + vc |

≤| kc | D∞(u, v) + diam(k) | uc − vc |

≤
(
| kc | +diam(k)

)
D∞(u, v) = KD∞(u, v).

The proof of other states are similar. �
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Lemma 2.12. Let u, v ∈ R+
F (R

−
F ). Then

Core(u⊙ v) = Core(u)Core(v).

Proof. The proof immediately follows from [5]. �
Remark 2.13. f : (a, b) → RF is called fuzzy function and its α− cuts are as

(
f(t)

)
α
= [f−

α (t), f+
α (t)] for all α ∈ [0, 1].

Definition 2.14. [14] Let the integrable function f : (a, b) → RF be such that (f(t))α = [f−
α (t), f+

α (t)]. We define(∫ b

a

f(s)ds

)
α

=
[ ∫ b

a

f−
α (s)ds,

∫ b

a

f+
α (s)ds

]
.

Definition 2.15. [14] Let f : (a, b) → RF and x0 ∈ (a, b). We say f is strongly generalized differentiable at x0 if
there exists an element f ′(x0) ∈ RF such that one of the following statements is true

(i) For all h > 0 sufficiently small, ∃f(x0 + h)⊖ f(x0), f(x0)⊖ f(x0 − h) such that

lim
h↘0

f(x0 + h)⊖ f(x0)

h
= lim

h↘0

f(x0)⊖ f(x0 − h)

h
= f ′(x0).

(ii) For all h > 0 sufficiently small, ∃f(x0)⊖ f(x0 + h), f(x0 − h)⊖ f(x0) such that

lim
h↘0

f(x0)⊖ f(x0 + h)

−h
= lim

h↘0

f(x0 − h)⊖ f(x0)

−h
= f ′(x0).

(iii) For all h > 0 sufficiently small, ∃f(x0 + h)⊖ f(x0), f(x0 − h)⊖ f(x0) such that

lim
h↘0

f(x0 + h)⊖ f(x0)

h
= lim

h↘0

f(x0 − h)⊖ f(x0)

−h
= f ′(x0).

(iv) For all h > 0 sufficiently small, ∃f(x0)⊖ f(x0 + h), f(x0)⊖ f(x0 − h) such that

lim
h↘0

f(x0)⊖ f(x0 + h)

−h
= lim

h↘0

f(x0)⊖ f(x0 − h)

h
= f ′(x0).

Lemma 2.16. [14] Let f : (a, b) → RF such that f ∈ C
(
(a, b),RF

)
. Then

(1) F (t) =
∫ t

a
f(s)ds is (i)-differentiable and we have F ′(t) = f(t).

(2) F (t) =
∫ a

t
f(s)ds is (ii)-differentiable and we have F ′(t) = −f(t).

Lemma 2.17. [16] Let f : (a, b) → RF be a fuzzy function, i.e.
(
f(t)

)
α
= [f−

α (t), f+
α (t)] for α ∈ [0, 1].

(1) If f is (i)-differentiable, then f−
α (t), f+

α (t) are differentiable functions on (a, b) and(
f ′(t)

)
α
= [(f−

α (t))′, (f+
α (t))′]. (2.6)

(2) If f is (ii)-differentiable, then f−
α (t), f+

α (t) are differentiable functions on (a, b) and(
f ′(t)

)
α
= [(f+

α (t))′, (f−
α (t))′]. (2.7)

Definition 2.18. [8] We say that a point x0 ∈ (a, b) is a switching point for the differentiability of f , if in any
neighborhood V of x0 there exist points x1, x2 such that

• type(I) at x1 (2.6) holds while (2.7) does not hold and at x2 (2.7) holds and (2.6) does not hold, or
• type(II) at x1 (2.7) holds while (2.6) does not hold and at x2 (2.6) holds and (2.7) does not hold.

Remark 2.19. Throughout this paper, f : J → RF is called GH-differentiable if it is (i)- or (ii)-differentiable on J
and we consider J = [0, T ].

Lemma 2.20. [14] Let f be GH-differentiable on J . Then∫ T

0

f ′(s)ds = f(T )⊖gH f(0).

Lemma 2.21. [14] Let f : J → RF be GH-differentiable on J , then we have

(1) If f(t) is (i)-differentiable, then diam
(
f(t)

)
is increasing with respect to t.
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Table 1. GH-differentiability of f + g and f ⊖ g.

Case Diff f Diff g Diff (f + g) (f + g)′ Diff (f ⊖ g) (f ⊖ g)′

1 (i) (i) (i) f ′ + g′ (i) f ′ ⊖ g′

2 (ii) (ii) (ii) f ′ + g′ (ii) f ′ ⊖ g′

3 (i) (ii) (i) f ′ ⊖ (−1)g′ (i) f ′ + (−1)g′

4 (ii) (i) (ii) f ′ ⊖ (−1)g′ (ii) f ′ + (−1)g′

Table 2. GH-differentiability of fg.

Case f f ′ Diff g Diff (fg) (fg)′

1 ≥ 0 ≥ 0 (i) (i) f ′g + fg′

2 ≥ 0 ≤ 0 (i) (i) fg′ ⊖ (−1)f ′g
3 ≤ 0 ≥ 0 (i) (ii) fg′ ⊖ (−1)f ′g
4 ≤ 0 ≤ 0 (i) (ii) f ′g + fg′

5 ≥ 0 ≥ 0 (ii) (ii) fg′ ⊖ (−1)f ′g
6 ≥ 0 ≤ 0 (ii) (ii) f ′g + fg′

7 ≤ 0 ≥ 0 (ii) (i) f ′g + fg′

8 ≤ 0 ≤ 0 (ii) (i) fg′ ⊖ (−1)f ′g
9 ≥ 0 ≥ 0 (ii) (i) f ′g ⊖ (−1)fg′

(2) If f(t) is (ii)-differentiable, then diam
(
f(t)

)
is decreasing with respect to t.

Lemma 2.22. [4] Let f : J → RF be such that
(
f(t)

)
α
= [f−

α (t), f+
α (t)]. Suppose that real functions f−

α (t), f+
α (t) are

differentiable with respect to t.

(1) If the intervals [(f−
α (t))′, (f+

α (t))′] for all α ∈ [0, 1] and t ∈ J , determine valid α cuts of a fuzzy number, then
the H-differences f(t+ h)⊖ f(t) and f(t)⊖ f(t− h) exist for all h > 0 sufficiently small.

(2) If the intervals [(f+
α (t))′, (f−

α (t))′] for all α ∈ [0, 1] and t ∈ J , determine valid α cuts of a fuzzy number, then
the H-differences f(t)⊖ f(t+ h) and f(t− h)⊖ f(t) exist for all h > 0 sufficiently small.

Lemma 2.23. [4, 14, 27] Let f, g : J → RF be GH-differentiable on J . Then f + g, f ⊖ g : J → RF are GH-
differentiable on J provided that the involving H-differences exist and the details of their kind of GH-differentiability
are stated in Table 1.

Lemma 2.24. [25] Let f : J → R and g : J → RF be GH-differentiable on J . Then fg : J → RF is GH-differentiable
on J provided that the involving H-differences exist and the details of their kind of GH-differentiability is stated in
Table 2.

Lemma 2.25. Let f : J → R+
F (R

−
F ) be GH-differentiable on J and k ∈ R+

F (R
−
F ). Then k ⊙ f : J → R+

F (R
−
F ) is GH-

differentiable on J provided that the involving H-differences exist and the details of their kind of GH-differentiability
is stated in Table 3.

Proof. Case 1: Since k ∈ R+
F (R

−
F ) and f ⊙ f ′ ≽ 0, we have four states with the sign of k, f and f ′. We suppose k ∈ R−

F

and f, f ′ ≽ 0. Therefore(
k ⊙ f(t)

)
α
= [(k−α − kc)fc(t) + kcf

+
α (t), (k+α − kc)fc(t) + kcf

−
α (t)].

On the other hand, f is (i)-differentiable. Hence, we have

(k ⊙ f ′(t))α = [(k−α − kc)(fc(t))
′ + kc(f

+
α (t))′, (k+α − kc)(fc(t))

′ + kc(f
−
α (t))′].

Since
(
(k⊙ f(t))−α

)′
= (k⊙ f ′(t))−α and

(
(k⊙ f(t))+α

)′
= (k⊙ f ′(t))+α , we claim that k⊙ f(t) is (i)-differentiable. So, from

Lemma 2.22, the H-differences k ⊙ f(t + h) ⊖ k ⊙ f(t) and k ⊙ f(t) ⊖ k ⊙ f(t − h) exist. Also, from (i)-differentiability
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Table 3. GH-differentiability of k ⊙ f

Case f ⊙ f ′ Diff f Diff (k ⊙ f) (k ⊙ f)′

1 ≽ 0 (i) (i) k ⊙ f ′

2 ≼ 0 (i) (i) k ⊙ f ′ ⊖ (k − k)⊙ f ′

3 ≼ 0 (i) (ii) (k − k)⊙ f ′ ⊖ (−1)k ⊙ f ′

4 ≼ 0 (ii) (ii) k ⊙ f ′

5 ≽ 0 (ii) (ii) k ⊙ f ′ ⊖ (k − k)⊙ f ′

6 ≽ 0 (ii) (i) (k − k)⊙ f ′ ⊖ (−1)k ⊙ f ′

of f the H-differences f(t+ h)⊖ f(t) and f(t)⊖ f(t− h) exist. Consequently, from Lemma 2.8 and Proposition 2.11
along with f, f ′ ≽ 0, we have

lim
h↘0

D∞

(
k ⊙ f(t+ h)⊖ k ⊙ f(t)

h
, k ⊙ f ′(t)

)
= lim

h↘0
D∞

(
k ⊙ f(t+ h)⊖ f(t)

h
, k ⊙ f ′(t)

)
≤

(
| kc | +diam(k)

)
lim
h↘0

D∞

(
f(t+ h)⊖ f(t)

h
, f ′(t)

)
(2.8)

= 0.

Similarly, we can deduce

lim
h↘0

D∞

(
k ⊙ f(t)⊖ k ⊙ f(t− h)

h
, k ⊙ f ′(t)

)
= lim

h↘0
D∞

(
k ⊙ f(t)⊖ f(t− h)

h
, k ⊙ f ′(t)

)
≤

(
| kc | +diam(k)

)
lim
h↘0

D∞

(
f(t)⊖ f(t− h)

h
, f ′(t)

)
(2.9)

= 0.

Therefore from Definition 2.15, we can conclude
(
k ⊙ f

)′
= k ⊙ f ′. The proof of other states are similar.

Case 2: Since k ∈ R+
F (R

−
F ) and f ⊙ f ′ ≼ 0, we have several states with the sign of k, f and f ′. We suppose k ∈ R+

F

and f ≼ 0, f ′ ≽ 0. Therefore, we have(
k ⊙ f(t)

)
α
= [(k+α − kc)fc(t) + kcf

−
α (t), (k−α − kc)fc(t) + kcf

+
α (t)].

On the other hand, f is (i)-differentiable. Hence, we have

(k ⊙ f ′(t))α = [(k−α − kc)(fc(t))
′ + kc(f

−
α (t))′, (k+α − kc)(fc(t))

′ + kc(f
+
α (t))′].

Now, we suppose that the H-difference k⊙ f ′(t)⊖ (k− k)⊙ f ′(t) for t ∈ J exists. On the other hand,
(
(k⊙ f(t))−α

)′
=

(k⊙f ′(t)⊖(k−k)⊙f ′(t))−α and
(
(k⊙f(t))+α

)′
= (k⊙f ′(t)⊖(k−k)⊙f ′(t))+α which are valid α-level set of a fuzzy number.

Therefore, we claim that k ⊙ f(t) is (i)-differentiable. So, from Lemma 2.22, the H-differences k ⊙ f(t+ h)⊖ k ⊙ f(t)
and k⊙f(t)⊖k⊙f(t−h) exist. Also, from (i)-differentiability of f the H-differences f(t+h)⊖f(t) and f(t)⊖f(t−h)
exist. Consequently, from Definition 2.10, Lemma 2.8, and Proposition 2.11 along with f ≽ 0 and f ′ ≼ 0, we have

lim
h↘0

D∞

(
k ⊙ f(t+ h)⊖ k ⊙ f(t)

h
, k ⊙ f ′(t)⊖ (k − k)⊙ f ′(t)

)

= lim
h↘0

D∞

(
k ⊙

f(t+ h)⊖ f(t)

h
⊖ (k − k)⊙

f(t+ h)⊖ f(t)

h
, k ⊙ f ′(t)⊖ (k − k)⊙ f ′(t)

)
≤
(

| kc | +3diam(k)

)
lim
h↘0

D∞

(
f(t+ h)⊖ f(t)

h
, f ′(t)

)
= 0.
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Table 4. CF-differentiability of f + g and f ⊖ g

Case Diff f Diff g CFDβ
∗ (f + g) CFDβ

∗ (f ⊖ g)

1 (i) (i) CFDβ
∗ f +CFDβ

∗ g (i)-CF CFDβ
∗ f ⊖ (−1)CFDβ

∗ g (i)-CF

2 (ii) (ii) CFDβ
∗ f +CFDβ

∗ g (ii)-CF CFDβ
∗ f ⊖ (−1)CFDβ

∗ g (ii)-CF

3 (i) (ii) CFDβ
∗ f ⊖ (−1)CFDβ

∗ g (i)-CF CFDβ
∗ f + (−1)CFDβ

∗ g (i)-CF

4 (ii) (i) CFDβ
∗ f ⊖ (−1)CFDβ

∗ g (ii)-CF CFDβ
∗ f + (−1)CFDβ

∗ g (ii)-CF

Similarly, we can deduce

lim
h↘0

D∞

(
k ⊙ f(t)⊖ k ⊙ f(t− h)

h
, k ⊙ f ′(t)⊖ (k − k)⊙ f ′(t)

)

= lim
h↘0

D∞

(
k ⊙

f(t)⊖ f(t− h)

h
⊖ (k − k)⊙

f(t)⊖ f(t− h)

h
, k ⊙ f ′(t)⊖ (k − k)⊙ f ′(t)

)
≤
(
| kc | +3diam(k)

)
lim
h↘0

D∞

(
f(t)⊖ f(t− h)

h
, f ′(t)

)
= 0.

Therefore from Definition 2.15, we can conclude (k⊙ f)′ = k⊙ f ′⊖ (k−k)⊙ f ′. The proof of other states are similar.
�

3. Fuzzy CF fractional derivative and integral

In this section, we present some definitions and properties of fuzzy Caputo-Fabrizio fractional derivative and integral
which we will use throughout this study. Moreover, we give some theorems about the solution of linear fuzzy fractional
differential equation involving Caputo-Fabrizio operator. Throughout this paper, we assume 0 < β < 1.

Definition 3.1. [1] Let f : J → RF be GH-differentiable such that f ′ ∈ L1(J,RF ). The fuzzy CF derivative of f is
defined as

CFDβ
∗ f(t) =

1

1− β

∫ t

0

exp
( −β

1− β
(t− s)

)
f ′(s)ds, t ∈ J.

Definition 3.2. Let f : J → RF be GH-differentiable such that f ′ ∈ L1(J,RF ).

(1) If f is (i)-differentiable, then(
CFDβ

∗ f(t)
)
α
=
[
CFDβ

∗ f
−
α (t),CFDβ

∗ f
+
α (t)

]
.

and f is called (i)-CF differentiable.
(2) If f is (ii)-differentiable, then(

CFDβ
∗ f(t)

)
α
=
[
CFDβ

∗ f
+
α (t),CFDβ

∗ f
−
α (t)

]
.

and f is called (ii)-CF differentiable.

Remark 3.3. Throughout this study, f is called CF differentiable on J if it is (i)- or (ii)-CF differentiable on J .

Definition 3.4. Let f : J → RF such that f ∈ L1(J,RF ). The fuzzy CF integral of f is defined as

CFIβ∗ f(t) = (1− β)f(t) + β

∫ t

0

f(s)ds, t ∈ J.

Lemma 3.5. Let f , g, f + g and f ⊖ g be GH-differentiable on J and their derivatives are integrable on J . Then
f + g and f ⊖ g are CF differentiable on J provided that the involving H-differences exist and the details of their kind
of differentiability is as Table 4.
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Proof. Case 1: According to assumptions, f and g are (i)-differentiable. From Lemma 2.23, f + g and f ⊖ g are
(i)-differentiable and we have (f + g)′ = f ′ + g′ and (f ⊖ g)′ = f ′ ⊖ g′ provided the involving H-difference exists.
Therefore, from Definition 3.2, f + g and f ⊖ g are (i)-CF differentiable. Consequently, applying Definition 3.1, we
have

CFDβ
∗
(
f(t) + g(t)

)
=

1

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)(
f ′(s) + g′(s)

)
ds

=
1

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)
f ′(s)ds+

1

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)
g′(s)ds

= CFDβ
∗ f(t) +

CFDβ
∗ g(t),

and

CFDβ
∗
(
f(t)⊖ g(t)

)
=

1

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)(
f ′(s)⊖ g′(s)

)
ds

=
1

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)
f ′(s)ds⊖ 1

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)
g′(s)ds

= CFDβ
∗ f(t)⊖ CFDβ

∗ g(t).

Case 3: Let f be (i)-differentiable and g be (ii)-differentiable. Therefore, from Lemma 2.23, f + g and f ⊖ g are
(i)-differentiable i.e. (f + g)′ = f ′ ⊖ (−1)g′ and (f ⊖ g)′ = f ′ + (−1)g′ provided the involving H-difference exists.
Therefore, from Definition 3.2, f + g and f ⊖ g are (i)-CF differentiable. Consequently, from Definition 3.1, we have

CFDβ
∗
(
f(t) + g(t)

)
=

1

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)(
f ′(s)⊖ (−1)g′(s)

)
ds

=
1

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)
f ′(s)ds⊖ (−1)

1

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)
g′(s)ds

= CFDβ
∗ f(t)⊖ (−1)CFDβ

∗ g(t),

and

CFDβ
∗
(
f(t)⊖ g(t)

)
=

1

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)(
f ′(s) + (−1)g′(s)

)
ds

=
1

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)
f ′(s)ds+ (−1)

1

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)
g′(s)ds

= CFDβ
∗ f(t) + (−1)CFDβ

∗ g(t).

�
Remark 3.6. If k ∈ RF , then

CFDβ
∗ k = 0.

Proof. It follows immediately from (k)′ = 0. �
Lemma 3.7. Let k ∈ R+

F (R
−
F ) and f : J → R+

F (R
−
F ) such that f ∈ L1(J,RF ). Then

CFIβ∗
(
k ⊙ f(t)

)
= k ⊙ CFIβ∗ f(t).

Proof. There are four states for the sign of k and f . We assume k, f ≽ 0. From Definition 2.14 and Remark 2.6, we
have (

CFIβ∗ (k ⊙ f(t))
)
α
=

[ (CFIβ∗
(
k ⊙ f(t)

))−

α
,
(
CFIβ∗

(
k ⊙ f(t)

))+

α

]
=

[
(k−

α − kc)

(
(1− β)fc(t) + β

∫ t

0

fc(s)ds

)
+ kc

(
(1− β)f−

α (t) + β

∫ t

0

f−
α (s)ds

)
, (k+

α − kc)

(
(1− β)fc(t) + β

∫ t

0

fc(s)ds

)
+ kc

(
(1− β)f+

α (t) + β

∫ t

0

f+
α (s)ds

)]
=

(
k ⊙ CFIβ∗ f(t)

)
α
.

In a similar way, we can prove the other states. �
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Lemma 3.8. Consider f : J → RF such that f is GH-differentiable and f ′ ∈ L1(J,RF ).

(1) If CFIβ∗ f(t) is (i)-differentiable, then

CFDβ
∗

CFIβ∗ f(t) = f(t)⊖ exp(
−βt

1− β
)f(0).

(2) If CFIβ∗ f(t) is (ii)-differentiable, then

CFDβ
∗

CFIβ∗ f(t) = (−1)

(
exp(

−βt

1− β
)f(0)⊖ f(t)

)
.

Proof. Case 1: Since CFIβ∗ f(t) is (i)-differentiable and f is GH-differentiable on J , so f is (i) or (ii)-differentiable on

J . Firstly, we assume f is (i)-differentiable. Since 0 < β < 1, from Lemma 2.24, exp( βt
1−β )f(t) is (i)-differentiable.

Therefore, from Case 1 of Lemma 3.5, we have

CFDβ
∗

CFIβ∗ f(t) =
CFDβ

∗

(
(1− β)f(t) + β

∫ t

0

f(s)ds

)
(3.1)

= (1− β)CFDβ
∗ f(t) + β CFDβ

∗
( ∫ t

0

f(s)ds
)

= exp(
−βt

1− β
)

∫ t

0

exp(
βs

1− β
)f ′(s)ds+

β

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)
f(s)ds. (3.2)

For computing
∫ t

0
exp

(
βs
1−β

)
f ′(s)ds, we apply Case 1 of Lemma 2.24 as follows∫ t

0

(
exp

( βs

1− β

)
f(s)

)′

ds =

∫ t

0

exp
( βs

1− β

)
f ′(s)ds+

β

1− β

∫ t

0

exp
( βs

1− β

)
f(s)ds.

Therefore, from Lemma 2.20, we have

exp
( βt

1− β

)
f(t)⊖ f(0) =

∫ t

0

exp
( βs

1− β

)
f ′(s)ds+

β

1− β

∫ t

0

exp
( βs

1− β

)
f(s)ds.

Thus, we infer∫ t

0

exp
( βs

1− β

)
f ′(s)ds =

(
exp

( βt

1− β

)
f(t)⊖ f(0)

)
⊖ β

1− β

∫ t

0

exp
( βs

1− β

)
f(s)ds.

Putting the above relation into Eq. (3.1), we have

CFDβ
∗

CFIβ∗ f(t) =

((
f(t)⊖ exp(

−βt

1− β
)f(0)

)
⊖ β

1− β

∫ t

0

exp(− β

1− β
(t− s))f(s)ds

)
+

β

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)
f(s)ds.

From (i)-differentiability of exp( βt
1−β )f(t) along with Lemma 2.20, the H-difference f(t) ⊖ exp(−βt

1−β )f(0) for t ≥ 0

exists. On the other hand, CFDβ
∗ f(t) ∈ RF . Hence, from the results of Lemma 2.3, we deduce

CFDβ
∗

CFIβ∗ f(t) =

(
f(t) +

β

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)
f(s)ds

)
⊖

(
exp(

−βt

1− β
)f(0) +

β

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)
f(s)ds

)
= f(t)⊖ exp(

−βt

1− β
)f(0).

Secondly, we assume f is (ii)-differentiable. Since CFIβ∗ f(t) is (i)-differentiable, therefore the H-difference βf(t) ⊖
(−1)(1− β)f ′(t) for t ≥ 0 exists. Therefore, exp( βt

1−β )f(t) must be (i)-differentiable. In a similar way, from Lemmas

2.25 and 3.5, we have

CFDβ
∗

CFIβ∗ f(t) = β CFDβ
∗
( ∫ t

0

f(s)ds
)
⊖ (−1)(1− β)CFDβ

∗ f(t)

=
β

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)
f(s)ds

⊖
(

β

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)
f(s)ds⊖

(
f(t)⊖ exp(

−βt

1− β
)f(0)

))
.
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Since exp( βt
1−β )f(t) is (i)-differentiable, from Lemma 2.20, the H-difference f(t) ⊖ exp(−βt

1−β )f(0) for t ≥ 0 always

exists. On the other hand, CFDβ
∗ f(t) ∈ RF . Therefore, from Lemma 2.3, we have

CFDβ
∗

CFIβ∗ f(t) =

(
β

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)
f(s)ds+

(
f(t)⊖ exp(

−βt

1− β
)f(0)

))
⊖ β

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)
f(s)ds

= f(t)⊖ exp(
−βt

1− β
)f(0).

Case 2: According to the assumptions of Case 2, CFIβ∗ f(t) is (ii)-differentiable. To verify this assumption, we must
have (ii)-differentiability for f and the existence of the H-difference (1− β)f ′(t)⊖ (−1)βf(t). From Lemma 2.24, we

can conclude exp( βt
1−β )f(t) is (ii)-differentiable. From Case 4 of Lemma 3.5 and Definition 3.1, we can conclude

CFDβ
∗

CFIβ∗ f(t) =
CFDβ

∗

(
(1− β)f(t) + β

∫ t

0

f(s)ds

)
= (1− β)CFDβ

∗ f(t)⊖ (−β)CFDβ
∗
( ∫ t

0

f(s)ds
)

= exp(
−βt

1− β
)

∫ t

0

exp(
βs

1− β
)f ′(s)ds⊖ −β

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)
f(s)ds. (3.3)

For computing
∫ t

0
exp

(
βs
1−β

)
f ′(s)ds, we apply Case 3 of Lemma 2.24 as follows

∫ t

0

(
exp

( βs

1− β

)
f(s)

)′

ds =

∫ t

0

exp(
βs

1− β
)f ′(s)ds⊖ −β

1− β

∫ t

0

exp
( βs

1− β

)
f(s)ds.

Therefore, from Lemma 2.20, we have

(−1)

(
f(0)⊖ exp(

βt

1− β
)f(t)

)
=

∫ t

0

exp
( βs

1− β

)
f ′(s)ds⊖ −β

1− β

∫ t

0

exp
( βs

1− β

)
f(s)ds.

Thus, we infer∫ t

0

exp
( βs

1− β

)
f ′(s)ds = (−1)

(
f(0)⊖ exp(

βt

1− β
)f(t)

)
+

−β

1− β

∫ t

0

exp
( βs

1− β

)
f(s)ds.

Putting the above relation into Eq. (3.3), we have

CFDβ
∗

CFIβ∗ f(t) =(−1)

((
exp(

−βt

1− β
)f(0)⊖ f(t)

)
+

β

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)
f(s)ds

)
⊖ −β

1− β

∫ t

0

exp
(
− β

1− β
(t− s)

)
f(s)ds.

Consequently, form Lemma 2.20, the H-difference exp(−βt
1−β )f(0)⊖ f(t) for t ≥ 0 exists. Hence we deduce

CFDβ
∗

CFIβ∗ f(t) = (−1)

(
exp(

−βt

1− β
)f(0)⊖ f(t)

)
.

�

4. Linear fuzzy CF fractional differential equations with fuzzy coefficients and fuzzy initial
value

In this section, we investigate the following fuzzy initial value problem of linear fuzzy CF fractional differential
equations with fuzzy coefficients

CFDβ
∗ y(t) = a⊙ y(t) + f(t), t ∈ J, (4.1)

y(0) = y0,

where a, y0 ∈ RF and f : J → RF is generalized differentiable such that f ′ ∈ L1(J,RF ).
This section is divided into two subsections. The first subsection is devoted to non-homogenous linear fuzzy CF
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fractional differential equation with crisp force function and the second to non-homogenous linear fuzzy CF fractional
differential equation with fuzzy force function.

Definition 4.1. We say that y ∈ C(J,RF ) is (i)-solution of Problem (4.1), if y is (i)-CF differentiable and satisfies
in Problem (4.1). Also, y ∈ C(J,RF ) is (ii)-solution of Problem (4.1), if y is (ii)-CF differentiable and satisfies in
Problem (4.1).

4.1. Non-homogenous linear fuzzy CF fractional differential equation with uncertainty in speed and
initial value.
We consider the initial valve problem

CFDβ
∗ y(t) = a⊙ y(t) + f(t), t ∈ J (4.2)

y(0) = y0,

where a, y0 ∈ R+
F (R

−
F ) and f : J → R is differentiable such that f ′ ∈ L1(J,R). Throughout the paper, we consider

p = (1− β)ac, q = βac, and λ = q
1−p .

According to the Problem (4.2) and the fact that CFDβ
∗ y(0) = 0, we deduce a⊙ y(0) + f(0) = 0. Therefore, we solve

Problem (4.2) under one of the following conditions.

(1) f(0) = 0, a ∈ RF, ac ̸= {0}, and y0 = 0 ∈ R.
(2) f(0) = 0, a = 0 ∈ R, and y0 ∈ RF.
(3) f(0) = 0, a, y0 ∈ RF, and ac = y0c = {0}.

For the sake of simplicity, we suppose the following conditions.

Definition 4.2. We say that the function h(t) satisfies conditions (A1)− (A5), if

(A1) βh(t) + (1− β)h′(t) ≥ 0, ∀t ∈ (0, T ).
(A2) βh(t) + (1− β)h′(t) ≤ 0, ∀t ∈ (0, T ).
(A3)

∫ t

0

(
βh(s) + (1− β)h′(s)

)
ds+ y0

c ≥ 0, ∀t ∈ (0, T ).

(A4)
∫ t

0

(
βh(s) + (1− β)h′(s)

)
ds+ y0

c ≤ 0, ∀t ∈ (0, T ).
(A5) (∫ t

0

(
1− β +

β

1− p
(t− s)

)(
βh(s) + (1− β)h′(s)

)
e−λsds+ βty0c

)(
(1− β)

(
βh(t) + (1− β)h′(t)

)
+

β

1− p
eλt
∫ t

0

(
λ(t− s) + p+ 1

)(
βh(s) + (1− β)h′(s)

)
e−λsds

)
+ β

(
1 + λt

)
eλty0c

)
≥ 0,∀t ∈ (0, T ).

Theorem 4.3. Let f : J → R be differentiable such that f ′ ∈ L1(J,R). Moreover, let y0, a ∈ R+
F (R

−
F ). Consider

y1N (t) =
eλt

1− p

∫ t

0

(
βf(s) + (1− β)f ′(s)

)
e−λsds+ eλty0 + (a− ac)⊙ g(t),

y2N (t) =
eλt

1− p

∫ t

0

(
βf(s) + (1− β)f ′(s)

)
e−λsds+

(
eλty0 ⊖ (−1)(a− ac)⊙ g(t)

)
,

where

g(t) =
eλt

(1− p)2

(
βty0 +

∫ t

0

(
1− β +

β

1− p
(t− s)

)(
βf(s) + (1− β)f ′(s)

)
e−λsds

)
.

Then, the kind of solution to Problem (4.2) along with required conditions in the details are presented in Tables 5, 6,
and 7.

Proof. Here, we just prove Case 1 of Table 5. The other cases of Tables 5, 6, and 7 can be investigated in a similar
manner. Since p = 0, so λ = q

1−p = 0. Let f, f ′ ≥ 0 and y0 ≽ 0.

(y1N (t))1 =

∫ t

0

(
βf(s) + (1− β)f ′(s)

)
ds+ y0

c ≥ 0.
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Table 5. The obtained results of Theorem 4.3 with p = 0 for t ∈ (0, T ) in details.

Case condition on f solution kind of Diff
for solution

1 f, f ′ ≥ 0, y0c ≥ 0 y1N (i)
2 f, f ′ ≤ 0, y0c ≤ 0 y1N (i)
3 f, f ′ ≤ 0, y0c ≥ 0, (A3), (A5) y1N (i)
4 f, f ′ ≥ 0, y0c ≤ 0, (A4), (A5) y1N (i)
5 ff ′ ≤ 0, y0c ≥ 0, (A1) y1N (i)
6 ff ′ ≤ 0, y0c ≤ 0, (A2) y1N (i)
7 ff ′ ≤ 0, , y0c ≥ 0, (A3), (A5) y1N (i)
8 ff ′ ≤ 0, , y0c ≤ 0, (A4), (A5) y1N (i)
9 f, f ′ ≥ 0, y0c ≥ 0 y2N (ii)
10 f, f ′ ≤ 0, y0c ≤ 0 y2N (ii)
11 f, f ′ ≤ 0, y0c ≥ 0, (A3), (A5) y2N (ii)
12 f, f ′ ≥ 0, y0c ≤ 0, (A4), (A5) y2N (ii)
13 ff ′ ≤ 0, y0c ≥ 0, (A1) y2N (ii)
14 ff ′ ≤ 0, y0c ≤ 0, (A2) y2N (ii)
15 ff ′ ≤ 0, , y0c ≥ 0, (A3), (A5) y2N (ii)
16 ff ′ ≤ 0, , y0c ≤ 0, (A4), (A5) y2N (ii)

Table 6. The obtained results of Theorem 4.3 with 0 < p < 1 for t ∈ (0, T ) in details.

Case condition on f solution kind of Diff
for solution

1 ff ′ ≥ 0 y1N (i)
2 ff ′ ≤ 0, (A1) y1N (i)
3 ff ′ ≤ 0, (A2) y1N (i)

Table 7. The obtained results of Theorem 4.3 with p > 1 for t ∈ (0, T ) in details.

Case condition on f solution kind of Diff
for solution

1 ff ′ ≥ 0, (A5) y1N (i)
2 ff ′ ≤ 0, (A2), (A5) y1N (i)
3 ff ′ ≤ 0, (A1), (A5) y1N (i)

Consequently, y1N (t) ≽ 0. From Lemma 2.3, Proposition 2.8, and condition a⊙ y0 + f(0) = 0, we can deduce

a⊙ y1N (t) + f(t) =
(∫ t

0

(
βf(s) + (1− β)f ′(s)

)
e−λsds

)
a+ f(t). (4.3)

From Lemmas 2.23 and 2.24, g(t) is (i)-differentiable. It is easy to check that Core
(
g(t)⊙ g′(t)

)
=

(
g(t)

)
1
.
(
g′(t)

)
1
≥ 0.

Then, from Lemma 2.25, a⊙ g(t) is (i)-differentiable. Consequently, y1N is (i)-differentiable and we have

y′
1N (t) = βf(t) + (1− β)f ′(t) + a⊙ g′(t).
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Table 8. The required conditions for Theorem 4.4.

Case condition on fc

1 fc, f
′
c ≥ 0, y0c ≥ 0

2 fc, f
′
c ≤ 0, y0c ≤ 0

3 fc, f
′
c ≤ 0, y0c ≥ 0, (A3), (A5)

4 fc, f
′
c ≥ 0, y0c ≤ 0, (A4), (A5)

5 fcf
′
c ≤ 0, y0c ≥ 0, (A1)

6 fcf
′
c ≤ 0, y0c ≤ 0, (A2)

7 fcf
′
c ≤ 0, , y0c ≥ 0, (A3), (A5)

8 fcf
′
c ≤ 0, , y0c ≤ 0, (A4), (A5)

From Definition 3.1, Lemma 2.3, and condition a⊙ y0 + f(0) = 0, we have

CFDβ
∗ y1N (t) =

1

1− β

∫ t

0
exp

( −β

1− β
(t− s)

)
y′1N (s)ds

= f(t)− e
−βt
1−β f(0) +

(∫ t

0

(
βf(s) + (1− β)f ′(s)

)
ds+ (1− e

−βt
1−β )y0

)
⊙ a

= f(t) +

(∫ t

0

(
βf(s) + (1− β)f ′(s)

)
ds

)
a. (4.4)

From Eq. (4.3) and (4.4), we can deduce

CFDβ
∗ y1N (t) = a⊙ y1N (t) + f(t).

Therefore, y1N is (i)-solution of Problem (4.2).
�

4.2. Non-homogenous linear fuzzy CF fractional differential equation with uncertainty in speed, source
and initial value.
We consider the initial valve problem

CFDβ
∗ y(t) = a⊙ y(t) + f(t), t ∈ J (4.5)

y(0) = y0,

where a, y0 ∈ RF and f : J → RF is generalized differentiable such that f ′ ∈ L1(J,RF ).
For simplicity, we present some notations which will be used in the next theorem.

(I) For t ∈ J the following H-difference exists.

βy0 ⊖ (−1)

(
(1− β)

(
βf(t) + (1− β)f ′(t)

)
+ β

∫ t

0

(
βf(s) + (1− β)f ′(s)

)
ds

)
.

Theorem 4.4. Let f : J → R+
F (R

−
F ) be (i)-differentiable such that f ′ ∈ L1(J,RF) and p = 0. Moreover, let

a, y0 ∈ R+
F (R

−
F ). Consider

y3N (t) = eλty0 ⊖ (−1)

(
(a− ac)⊙ ḡ(t) +

eλt

1− p

∫ t

0

(
βf(s) + (1− β)f ′(s)

)
e−λsds

)
,

where

ḡ(t) =
eλt

(1− p)2

(
βty0 ⊖ (−1)

∫ t

0

(
1− β +

β

1− p
(t− s)

)(
βf(s) + (1− β)f ′(s)

)
e−λsds

)
,

provided the above H-differences exist.

(1) Let f be (i)-differentiable. If one of the conditions presented in Table 8 satisfies, then y1N is (i)-solution of
Problem (4.5) for t ∈ (0, T ).
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Table 9. The required conditions for Theorem 4.4.

Case condition on fc

1 fc, f
′
c ≥ 0, y0c ≥ 0

2 fc, f
′
c ≤ 0, y0c ≤ 0

3 fc, f
′
c ≤ 0, y0c ≥ 0, (A3), (A5)

4 fc, f
′
c ≥ 0, y0c ≤ 0, (A4), (A5)

5 fcf
′
c ≤ 0, y0c ≥ 0, (A1)

6 fcf
′
c ≤ 0, y0c ≤ 0, (A2)

7 fcf
′
c ≤ 0, , y0c ≥ 0, (A3), (A5)

8 fcf
′
c ≤ 0, , y0c ≤ 0, (A4), (A5)

(2) Let f be (i)-differentiable. If one of the conditions presented in Table 9 along with the Condition (I) satisfy,
then y3N is (ii)-solution of Problem (4.5) for t ∈ (0, T ).

Notice that y1N has been presented in Theorem 4.3 with this difference that here the function f appeared in y1N is a
fuzzy function.

Proof. (1) Here, we just prove theorem under the condition in Row 1 of Table 8. The other cases can be investigated
in an analogous manner. Let f be (i)-differentiable, f, f ′ ≽ 0, and y0 ≽ 0. Since p = 0, so λ = q

1−p = 0. Thus, we

have

(y1N (t))1 = y0
c +

∫ t

0

(
βfc(s) + (1− β)f ′

c(s)
)
ds ≥ 0.

Therefore, y1N (t) ≽ 0. Also, by the results of Lemma 2.3, Proposition 2.8, and condition a ⊙ y0 + f(0) = 0 we can
deduce

a⊙ y1N (t) + f(t) =
(∫ t

0

(
βf(s) + (1− β)f ′(s)

)
ds
)
⊙ a+ f(t). (4.6)

From Lemmas 2.16 and 2.24, ty0 and ∫ t

0

(
βf(s) + (1− β)f ′(s)

)
ds,

∫ t

0

(
1− β + β(t− s)

)(
βf(s) + (1− β)f ′(s)

)
ds,

are (i)-differentiable. Therefore, from Lemma 2.23, g(t) is (i)-differentiable. It is easy to check that Core
(
g(t)⊙g′(t)

)
=(

g(t)
)
1
.
(
g′(t)

)
1
≥ 0. Then from Lemma 2.25, a ⊙ g(t) is (i)-differentiable. Consequently, y1N is (i)-differentiable and

we have

y′1N (t) =

∫ t

0

(
βf(s) + (1− β)f ′(s)

)
ds+ βf(t) + (1− β)f ′(t) + a⊙ g′(t).

Utilizing Definition 3.1 and Lemma 2.3, and condition a⊙ y0 + f(0) = 0, we have

CFDβ
∗ y1N (t) =

1

1− β

∫ t

0
exp

( −β

1− β
(t− s)

)
y′1N (s)ds

=
(∫ t

0

(
βf(s) + (1− β)f ′(s)

)
ds+ (1− e

−βt
1−β )y0

)
⊙ a+ (f(t)⊖ e

−βt
1−β f(0))

=
(∫ t

0

(
βf(s) + (1− β)f ′(s)

)
ds
)
⊙ a+ f(t). (4.7)

It follows from Eq. (4.6) and (4.7) that y1N satisfies Eq. (4.5) and we have

CFDβ
∗ y1N (t) = a⊙ y1N (t) + f(t).
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Table 10. The required conditions for Theorem 4.5.

Row condition on fc(t)

1 fcf
′
c ≥ 0

2 fcf
′
c ≤ 0, (A1)

3 fcf
′
c ≤ 0, (A2)

Consequently, using the above facts, y1N is (i)-solution of Problem (4.5) for t ∈ (0, T ).
(2) Here, we just prove Case 1 under the condition in Row 1 of Table 9. The other cases can be investigated in an
analogous manner. Let f be (i)-differentiable, f, f ′ ≽ 0, and y0 ≽ 0. Since p = 0, so λ = q

1−p = 0. Hence, we have

(y3N (t))1 = y0
c +

∫ t

0

(
βfc(s) + (1− β)f ′

c(s)
)
ds ≥ 0.

Therefore, y3N (t) ≽ 0. By the results of Lemma 2.3, Proposition 2.8, and condition a⊙ y0+ f(0) = 0, we can deduce

a⊙ y3N (t) + f(t) =
(∫ t

0

(
βf(s) + (1− β)f ′(s)

)
ds
)
⊙ a+ f(t). (4.8)

Let ḡ(t) be (i)-differentiable. It is easy to check that Core
(
ḡ(t) ⊙ ḡ′(t)

)
=
(
ḡ(t)

)
1
.
(
ḡ′(t)

)
1
≥ 0. Consequently, from

Lemma 2.25, a⊙ ḡ(t) is (i)-differentiable. It follows from Condition (I) that y3N is (ii)-differentiable and we have

y′3N (t) = y0 + a⊙ ḡ′(t) + βf(t) + (1− β)f ′(t),

From Definition 3.1, Lemma 2.3, and condition a⊙ y0 + f(0) = 0, we have

CFDβ
∗ y3N (t) =

1

1− β

∫ t

0
exp

( −β

1− β
(t− s)

)
y′3N (s)ds

=
(∫ t

0

(
βf(s) + (1− β)f ′(s)

)
ds+ (1− e

−βt
1−β )y0

)
⊙ a+

(
f(t)⊖ e

−βt
1−β f(0)

)
=
(∫ t

0

(
βf(s) + (1− β)f ′(s)

)
e−λsds

)
⊙ a+ f(t). (4.9)

From Eq. (4.8) and (4.9), we have

CFDβ
∗ y3N (t) = a⊙ y3N (t) + f(t).

Consequently, y3N is (ii)-solution of Problem (4.5). �

Theorem 4.5. Let f : J → R+
F (R

−
F ) be (i)-differentiable such that f ′ ∈ L1(J,RF) and let a ∈ R+

F and 0 < p < 1. If
one of conditions presented in Table 10 satisfies, then y1N is (i)-solution of Problem (4.5) for t ∈ (0, T ).

Proof. Here, we just prove theorem under the condition in Row 1 of Table 10. The other cases can be investigated in
an analogous manner. Let f be (i)-differentiable, f, f ′ ≽ 0. Since 0 < p < 1, hence from condition a⊙ y0 + f(0) = 0,
we have y0 = 0 and

(y1N (t))1 =
eλt

1− p

∫ t

0

(
βfc(s) + (1− β)f ′

c(s)
)
e−λsds ≥ 0.

Therefore, y1N (t) ≽ 0. Also, by the results of Lemma 2.3 and Proposition 2.8, and condition a ⊙ y0 + f(0) = 0, we
can deduce

a⊙ y1N (t) + f(t) =
( eλt

1− p

∫ t

0

(
βf(s) + (1− β)f ′(s)

)
e−λsds

)
⊙ a+ f(t)

+
eλt

(1− p)2

(∫ t

0

(
p+

q

1− p
(t− s)

)(
βf(s) + (1− β)f ′(s)

)
e−λsds

)
⊙ (a− ac). (4.10)

Since 0 < p < 1 and a ∈ R+
F , so λ = q

1−p > 0. Hence, from Lemma 2.24

eλt

1− p

∫ t

0

(
βf(s) + (1− β)f ′(s)

)
e−λsds,
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and

eλt
∫ t

0

(
1− β +

β

1− p
(t− s)

)(
βf(s) + (1− β)f ′(s)

)
e−λsds,

are (i)-differentiable. Therefore, from Lemma 2.23, g(t) is (i)-differentiable. It is easy to check that Core
(
g(t)⊙g′(t)

)
=(

g(t)
)
1
.
(
g′(t)

)
1
≥ 0. Then from Lemma 2.25, (a− ac)⊙ g(t) is (i)-differentiable. Consequently, y1N is (i)-differentiable

and we have

y′1N (t) =
1

1− p

(
λeλt

∫ t

0

(
βf(s) + (1− β)f ′(s)

)
e−λsds+ βf(t) + (1− β)f ′(t)

)
+ (a− ac)⊙ g′(t).

Utilizing Definition 3.1 and Lemma 2.3, we have

CFDβ
∗ y1N (t) =

1

1− β

∫ t

0
exp

( −β

1− β
(t− s)

)
y′1N (s)ds

=
ac

1− p
eλt
∫ t

0

(
βf(s) + (1− β)f ′(s)

)
e−λsds+

(
f(t)⊖ e

−βt
1−β f(0)

)
+

(
eλt

(1− p)2

(∫ t

0

(
1 +

q

1− p
(t− s)

)(
βf(s) + (1− β)f ′(s)

)
e−λsds

))
⊙ (a− ac)

=
( eλt

1− p

∫ t

0

(
βf(s) + (1− β)f ′(s)

)
e−λsds

)
⊙ a+ (f(t)⊖ e

−βt
1−β f(0))

+
eλt

(1− p)2

(∫ t

0

(
p+

q

1− p
(t− s)

)(
βf(s) + (1− β)f ′(s)

)
e−λsds

)
⊙ (a− ac)

=
( eλt

1− p

∫ t

0

(
βf(s) + (1− β)f ′(s)

)
e−λsds

)
⊙ a+ f(t)

+
eλt

(1− p)2

(∫ t

0

(
p+

q

1− p
(t− s)

)(
βf(s) + (1− β)f ′(s)

)
e−λsds

)
⊙ (a− ac). (4.11)

It follows from Eq. (4.10) and (4.11) that y1N satisfies Eq. (4.5) and we have

CFDβ
∗ y1N (t) = a⊙ y1N (t) + f(t).

Consequently, using the above facts, y1N is (i)-solution of Problem (4.5) for t ∈ (0, T ). �

For the convenience of the readers, we need some notations which are used in the following theorem.

(N1) For t ∈ (0, T ), g(t) is (i)-differentiable and either the H-differences

λeλt
∫ t

0
(βf(s) + (1− β)f ′(s))e−λsds⊖ (−1)

(
βf(t) + (1− β)f ′(t)

)
,

or

(a− ac)⊙ g′(t)⊖
1

p− 1

((
βf(t) + (1− β)f ′(t)

)
⊖ (−λ)eλt

∫ t

0

(
βf(s) + (1− β)f ′(s)

)
e−λsds

)
,

exist.
(N2) For t ∈ (0, T ), g(t) is (ii)-differentiable and the H-differences

(a− a)⊙ g′(t)⊖ a⊙ g′(t),

and

λeλt
∫ t

0
(βf(s) + (1− β)f ′(s))e−λsds⊖ (−1)

(
βf(t) + (1− β)f ′(t)

)
,

exist.

Theorem 4.6. Let f : J → R+
F (R

−
F ) be (i)-differentiable such that f ′ ∈ L1(J,RF) and let a ∈ R+

F and p > 1.
Consider

y4N (t) =
(
eλty0 + (a− ac)⊙ g(t)

)
⊖ eλt

p− 1

∫ t

0

(
βf(s) + (1− β)f ′(s)

)
e−λsds,

provided the above H-difference exists. If one of conditions presented in Table 11 along with the condition either
(N1) or (N2) satisfy, then y4N is (i)-solution of Problem (4.5) for t ∈ (0, T ).
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Table 11. The required conditions for Theorem 4.6.

Row condition on fc(t)

1 fcf
′
c ≥ 0, (A5)

2 fcf
′
c ≤ 0, (A2), (A5)

3 fcf
′
c ≤ 0, (A1), (A5)

Proof. Here, we just prove theorem under the conditions in Row 1 of Table 11. The other cases can be investigated
in an analogous manner. Let f be (i)-differentiable, f, f ′ ≽ 0. Since p > 1, hence from condition a ⊙ y0 + f(0) = 0,
we have y0 = 0

(y4N (t))1 =
eλt

1− p

∫ t

0

(
βfc(s) + (1− β)f ′

c(s)
)
e−λsds ≤ 0.

Therefore, y4N (t) ≽ 0. By the results of Lemma 2.3 and condition a⊙ y0 + f(0) = 0, we can deduce

a⊙ y4N (t) + f(t) =

(
eλt

(1− p)2

(∫ t

0

(
p+

q

1− p
(t− s)

)(
βf(s) + (1− β)f ′(s)

)
e−λsds

)
⊙ (a− ac)

⊖
( eλt

1− p

∫ t

0

(
βf(s) + (1− β)f ′(s)

)
e−λsds

)
⊙ a

)
+ f(t). (4.12)

Let g(t) be (i)-differentiable. Since fc(t) satisfies Condition (A5), we have Core
(
g(t)⊙ g′(t)

)
=
(
g(t)

)
1
.
(
g′(t)

)
1
≥ 0.

Consequently, from Lemma 2.25, (a − ac) ⊙ g(t) is (i)-differentiable. It follows from Condition (N1) that y2N is
(i)-differentiable and we have

y′
4N (t) = (a− ac)⊙ g′(t)⊖ 1

p− 1

((
βf(t) + (1− β)f ′(t)

)
⊖ (−λ)eλt

∫ t

0

(
βf(s) + (1− β)f ′(s)

)
e−λsds

)
,

or

y′
4N (t) = (a− ac)⊙ g′(t) + (−1)

(
λeλt

∫ t

0

(βf(s) + (1− β)f ′(s))e−λsds⊖ (−1)
(
βf(t) + (1− β)f ′(t)

))
.

From Definition 3.1 and Lemma 2.3, we have

CFDβ
∗ y4N (t) =

1

1− β

∫ t

0
exp

( −β

1− β
(t− s)

)
y′4N (s)ds

=

(( eλt

(1− p)2

∫ t

0

(
1 +

q

1− p
(t− s)

)(
βf(s) + (1− β)f ′(s)

)
e−λsds

)
⊙ (a− ac)

+
(
f(t)⊖ e

−βt
1−β f(0)

))
⊖

ac

1− p
eλt
∫ t

0

(
βf(s) + (1− β)f ′(s)

)
e−λsds

=

(
eλt

(1− p)2

(∫ t

0

(
p+

q

1− p
(t− s)

)(
βf(s) + (1− β)f ′(s)

)
e−λsds

)
⊙ (a− ac) + f(t)

)
⊖
( eλt

1− p

∫ t

0

(
βf(s) + (1− β)f ′(s)

)
e−λsds

)
⊙ a

=

(
eλt

(1− p)2

(∫ t

0

(
p+

q

1− p
(t− s)

)(
βf(s) + (1− β)f ′(s)

)
e−λsds

)
⊙ (a− ac)

⊖
( eλt

1− p

∫ t

0

(
βf(s) + (1− β)f ′(s)

)
e−λsds

)
⊙ a

)
+ f(t). (4.13)

From Eq. (4.12) and (4.13), we have

CFDβ
∗ y4N (t) = a⊙ y4N (t) + f(t).

Consequently, y4N is (i)-solution of Problem (4.5). �
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Example 4.7. Consider the following initial value problem

CFD
1
2
∗ y(t) =<

−1

2
, 0, 1 > ⊙y(t)+ < 1− et,

1− et

2
, et − 1 >, 0 ≤ t ≤ 3

2
(4.14)

y(0) =< −7, 0, 8 > .

Since f =< 1 − et, 1−et

2 , et − 1 > is (i)-differentiable, p = 0, f, f ′ ≼ 0, and y0 ≼ 0 for t ∈ (0, 3
2 ). Therefore, from

Theorem 4.4 under the conditions in Row 2 of Table 8, (i)-solution of Problem (4.14) is as

y1N =< yl(t), yc(t), yr(t) >=< −25

4
+

5t

16
− t2

32
− 3et

4
,
1

2
+

t

4
− et

2
,
15

2
− t

8
+

t2

16
+

e2

2
> .

Also, from Theorem 4.4 under the conditions in Row 2 of Table 9, (ii)-solution of Problem (4.14) is as

y3N =< yl(t), yc(t), yr(t) >=< −15

2
− t

8
+

t2

16
+

et

2
,
1

2
+

t

4
− et

2
,
35

4
+

5t

16
− t2

32
− 3et

4
> .

Figure 3 illustrates the level sets of the (i) and (ii)-solutions of Problem (4.14) obtained under the conditions of
Theorem 4.4.

(a) (b)

Figure 1. (a) The level sets of the (i)-solution of Problem (4.14). (b) The level sets of the (ii)-solution of Problem (4.14).

Example 4.8. Consider the following initial value problem

CFD
1
4
∗ y(t) =< −2, 1, 5 > ⊙y(t)+ < −2t sin(t), t, 2t sin(t) >, 0 ≤ t ≤ 1 (4.15)

y(0) = 0.

f =< −2t sin(t), t, 2t sin(t) > is (i)-differentiable, p = 3
4 , f, f

′ ≽ 0 for t ∈ (0, 1). Therefore, from Theorem 4.5 under
the conditions in Row 1 of Table 10, (i)-solution of Problem (4.15) is as

y1N =< yl(t), yc(t), yr(t) >

=< −3
((

t−
4 cos(t) + 2 sin(t)

3
+ 8
)
e−t + 16t−

20

3

)
et, 4et(1−

te−t

4
− e−t), 4

((
t− cos(t) +

sin(t)

2
+ 8
)
e−t + 16t− 7

)
et > .

Figure 2 illustrates the level sets of (i)-solutions of Problem (4.15) obtained under the conditions of Theorem 4.5.

Example 4.9. Consider the following initial value problem

CFD
1
2
∗ y(t) =< −7, 6, 10 > ⊙y(t)+ < −t, t, 2t >, 0 ≤ t ≤ 2 (4.16)

y(0) = 0.
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Figure 2. Solid line shows yl(t), long dash line shows yc(t), dash dot line shows yr(t) for Example 4.8.

f =< −t, t, 2t > is (i)-differentiable, p = 3, f, f ′ ≽ 0 for t ∈ (0, 2). Therefore, from Theorem 4.6 under the conditions
in Row 1 of Table 10, (i)-solution of Problem (4.16) is as

y1N =< yl(t), yc(t), yr(t) >

=
e

−3t
2

18
<

−1

24

(
e

3t
2 (300t+ 152) + 39t− 152

)
,−
(
e

3t
2 (3t+ 1)− 1

)
,
1

6

(
e

3t
2 (30t+ 14) + 3t− 14

)
> .

Figure 3 illustrates the level sets of (i)-solutions of Problem (4.16) obtained under the conditions of Theorem 4.6.

Figure 3. Solid line shows yl(t), long dash line shows yc(t), dash dot line shows yr(t) for Example 4.9.

Example 4.10. Consider the following initial value problem

CFD
2
3
∗ y(t) = a⊙ y(t) + f(t), 0 ≤ t ≤ 1 (4.17)

y(0) =< −3, 0, 1 > .

(1) If f = t + t2 and a = 0, then we have p = 0, f, f ′ ≥ 0, and y0c = 0 for t ∈ (0, 1). Therefore, from Case 1 of
Table 5, (i)-solution of Problem (4.17) is

y1N (t) =< yl(t), yc(t), yr(t) >=
2

9
t3 +

2

3
t2 +

1

3
t+ < −3, 0, 1 > .

Since the H-difference appeared in y2N does not exist, the (ii)-solution of Problem (4.17) does not exist.
(2) If f =< −et, t+ t2, et + 2t > and a = 0, then f is (i)-differentiable, p = 0, f, f ′ ≽ 0, and y0c = 0 for t ∈ (0, 1).

Therefore, from Theorem 4.4 under the conditions in Row 1 of Table 8, the (i)-solution of Problem (4.17) is
as

y1N (t) =< yl(t), yc(t), yr(t) >=< −2− et,
2

9
t3 +

2

3
t2 +

1

3
t, et +

2

9
t3 +

1

3
t2 > .

Since the H-difference appeared in y3N does not exist, (ii)-solution of Problem (4.17) does not exist.
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(3) If f = t + t2 and a =< −7, 0, 10 >, then we have p = 0, f, f ′ ≥ 0, and y0c = 0 for t ∈ (0, 1). Therefore, from
Case 1 of Table 5, (i)- solution of Problem (4.17) is

y1N (t) =< yl(t), yc(t), yr(t) >

=< − 7

27
t4 − 4

3
t3 − 5

3
t2 − 4

9
t− 3,

2

9
t3 +

2

3
t2 +

1

3
t,
10

27
t4 +

22

9
t3 + 4t2 +

13

9
t+ 1 > .

Since the H-difference appeared in y2N does not exist, the (ii)-solution of Problem (4.17) does not exist.
(4) If f =< −et, t + t2, et + 2t > and a =< −7, 0, 10 >, then f is (i)-differentiable, p = 0, f, f ′ ≽ 0, and y0c = 0

for t ∈ (0, 1). Therefore, from Theorem 4.4 under the conditions in Row 1 of Table 8, (i)-solution of Problem
(4.17) is

y1N (t) =< yl(t), yc(t), yr(t) >

=< − 7

27
t4 − 14

9
t3 − 7

3
t2 − et − 7

9
t− 2,

2

9
t3 +

2

3
t2 +

1

3
t,−10 + 11et +

46

9
t2 − 34

9
t+

40

27
t3 > .

Since the H-difference appeared in y3N does not exist, the (ii)-solution of Problem (4.17) does not exist.

(a) f = t+ t2, a = 0 (b) f =< −et, t + t2, et + t2 >
, a = 0

(c) f = t+ t2, a =< −7, 0, 10 > (d)
f =< −et, t+ t2, et + t2 >, a =< −7, 0, 10 >

Figure 4. Dash dot line shows yl(t), solid line shows yc(t), long dash line shows yr(t) .

Figure 4 illustrates the solution of Problem (4.17) for various values of ”a” and ”f”. In fact, the core of four
solutions of Problem (4.17) in Cases 1-4 are the same. We compare the uncertainty of y1N (t) in four cases. The
comparison between Figures 4(b) and 4(d) or 4(a) and 4(c) verifies that when ”a” is a fuzzy number, diam(y1N (t))
dramatically increases. However, comparing Figures 4(a) and 4(b) or 4(c) and 4(d) show that diam

(
y1N (t)

)
increases

but it is less than previous state. It means that the effect of parameter ”a” on uncertainty of the solution is more
than ”f”.
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5. Conclusion

In this paper, we presented analytical solutions for linear fully fuzzy Caputo-Fabrizio fractional differential equations
with fuzzy coefficients. The cross product of fuzzy number was considered as a product operator between the fuzzy
numbers. We investigated the explicit solutions of initial-value problems of linear Caputo-Fabrizio differential equations
with fuzzy coefficients. We have explained some of the topics needed for the results of this paper related to the cross
product of fuzzy numbers in details.
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