تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,047 |
تعداد مشاهده مقاله | 52,589,802 |
تعداد دریافت فایل اصل مقاله | 15,268,863 |
Monitoring the susceptibility of different populations of tomato leaf miner, Tuta absoluta to indoxacarb and its combination with azadirachtin | ||
پژوهش های کاربردی در گیاهپزشکی | ||
دوره 11، شماره 4، دی 1401، صفحه 131-139 اصل مقاله (681.11 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/arpp.2023.15914 | ||
نویسندگان | ||
محسن طلعه* 1؛ عزیز شیخی گرجان2؛ هوشنگ رفیعی3؛ عسگر عباداللهی4؛ سویل نوروزی نیا1 | ||
1گروه گیاه پزشکی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
2عضو هیت علمی موسسه تحقیقات گیاه پزشکی کشور | ||
3هیات علمی دانشگاه | ||
4هیات علمی دانشگاه دانشگاه محقق اردبیلی | ||
چکیده | ||
Tomato leaf miner, Tuta absoluta, is one of the most detrimental biological agents in tomato cultivation, and there have been many reports of its worldwide resistance to various insecticides. This study aimed to evaluate the resistance of six T. absoluta populations collected from four provinces of Iran, including Ardabil, Tehran, Alborz, and Khuzestan to the widely-used insecticide indoxacarb. Leaf-dipping method bioassay was performed against the second-instar larvae. Estimated 72 h-LC50 values had not any overlapping between their 95% confidence intervals in all populations, indicating the presence of significant resistance in six populations compared to the susceptible one. The highest to lowest resistance ratios were obtained for the populations of Ziba Shahr (25.83), Mohammad Shahr (13.08), Parsabad Moghan (8.68), Safiabad (8.52), Ardabil (4.23), and Benoot-e Bala (2.19), respectively. The indoxacarb mixed with azadirachtin at the LC10: LC10 ratio showed an additive effect, while the LC25: LC25 ratio showed a synergistic effect. Also, the larval mortality caused by a mixture of LC25 values of indoxacarb and azadirachtin was significantly higher than mortality due to their separately used LC50 values in the susceptible population. In conclusion, some indoxacarb-resistant levels were documented in field second-instar larvae of T. absoluta. However, adding azadirachtin enhanced insecticidal efficiency of indoxacarb, which may be applicable in the suitable and safe management of this detrimental insect pest. | ||
کلیدواژهها | ||
Azadirachtin؛ Indoxacarb؛ Resistance ratio؛ Susceptible population؛ Tomato leaf miner | ||
مراجع | ||
Abbott WS, 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265–267. Ahmad M, 2009. Observed potentiation between pyrethroid and organophosphorus insecticides for management of Spodoptera litura (Lepidoptera: Noctuidae). Crop Protection 28: 264–268. Amizadeh M, Hejazi MJ, Niknam G, Arzanlou M, 2015. Compatibility and interaction between Bacillus thuringiensis and certain insecticides: perspective in management of Tuta absoluta (Lepidoptera: Gelechiidae). Biocontrol Science and Technology 25 (6): 671–684. Ashtari S. 2021. Efficacy of spinosad, imidacloprid, indoxacarb and chlorantraniliprole on Tuta absoluta and two species of parasitoid wasps. Journal of Applied Research in Plant Protection 11(2): 79–90. Attique MNR, Khaliq A, Sayyed AH, 2006. Could resistance to insecticides in Plutella xylostella (Lep., Plutellidae) be overcome by insecticide mixtures?. Journal of Applied Entomology 130: 122–127. Baniameri V, Cheraghian A, 2012. The first report and control strategies of Tuta absoluta in Iran. EPPO Bulletin42: 322–324. Barati R, Hejazi MJ, Vontas J, Mohammadi SA, 2018. Susceptibility of two populations of tomato leaf miner Tuta absoluta to some insecticides and assessing possible mechanisms of resistance. PhD thesis, Agricultural entomology, University of Tabriz, Iran. Biondi A, Guedes RNC, Wan FH, Desneux N, 2018. Ecology, worldwide spread and management of the invasive South American tomato pinworm, Tuta absoluta: past, present and future. Annual Review of Entomology 63: 239–258. Boursier CM, Bosco D, Coulibaly A, Negre M, 2011. Are traditional neem extract preparations as efficient as a commercial formulation of azadirachtin A?. Crop Protection 30 (3): 318–322. Campos MR, Rodrigues ARS, Silva WM, Silva TBM, Silva VRF, et al., 2014. Spinosad and the tomato borer Tuta absoluta: A bioinsecticide, an invasive pest threat, and high insecticide resistance. PLoS ONE 9: e103235. Chaudhary S, Kanwar RK, Sehgal A, Cahill DM, Barrow CJ, et al., 2017. Progress on Azadirachta indica Based Biopesticides in Replacing Synthetic Toxic Pesticides. Frontiers in Plant Science 8: 610. Desneux N, Wajnberg E, Wyckhuys KA, Burgio G, Arpaia S, et al., 2010. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. Journal of Pest Science 83 (3): 197–215. FERA, 2009. South American tomato moth Tuta absoluta. Food and environment research agency, department for environment food and rural affairs. Plant pest notice 56. Available at: www.Idefre.gov.uk/fera. Gontijo PC, Picanço MC, Pereira EJG, Martins JC, Chediak M, et al., 2013. Spatial and temporal variation in the control failure likelihood of the tomato leaf miner, Tuta absoluta. Annals of Applied Biology 162 (1): 50–59. Guedes RNC, Roditakis E, Campos MR, Haddi K, Bielza P, et al., 2019. Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook. Journal of Pest Science 92: 1329–1342. Guedes RNC, Picanço MC, 2012. The tomato borer Tuta absoluta in South America: Pest status, management and insecticide resistance. EPPO Bulletin 42 (2): 211–216.
Guillemaud T, Blin A, Le GI, Desneux N, Reyes M, et al., 2015. The tomato borer, Tuta absoluta, invading the Mediterranean Basin, originates from a single introduction from Central Chile. Scientific Reports 5: 8371. Hemingway J, Ranson H, 2000. Insecticide resistance in insect vectors of human disease. Annual Review of Entomology 45: 371–391. Hosseinzadeh A, Aramideh S, Kahrizeh AG, 2019. Efficacy of bio-insecticides on Tuta absoluta (Meyrick) (Lep.: Gelechiidae) in laboratory and field conditions. Agricultural Engineering International: CIGR Journal 21 (3): 164–170. IRAC MoA Classification Scheme (Version 7.2). [Online]. IRAC (2012). Available: http://www.irac-online.org Accessed [12 June 2012]. Krechemer FDS, Foerster LM, 2015. Tuta absoluta (Lepidoptera: Gelechiidae): thermal requirements and effect of temperature on development, survival, reproduction and longevity. European Journal of Entomology 112: 658–663. Koppenhofer AM, Kaya HK, 1996. Additive and synergistic interaction between entomopathogenic nematodes and Bacillus thuringiensis for scarab grub control. Biological Control 8: 131–137. McCann SF, Annis GD, Shapiro R, Piotrowski DW, Lahm GP, et al., 2001. The discovery of indoxacarb: oxadiazines as a new class of pyrazoline- type insecticides. Pest Management Science 57: 153–164. Moadeli T, Hejazi MJ, Golmohammadi Gh, 2014. Lethal effects of pyriproxyfen, spinosad, and indoxacarb and sublethal effects of pyriproxyfen on the 1st instars larvae of beet armyworm, Spodoptera exigua Hübner (Lepidoptera: Noctuidae) in the laboratory. Journal of Agricultural Science and Technology 16: 1217–1227. Nazarpour L, Yarahmadi F, Saber M, Rajabpour A, 2016. Short and long term effects of some bio-insecticides on Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) and its coexisting generalist predators in tomato fields. Journal of Crop Protection 5 (3): 331–342. Nazeri N, Askari Seyahooei M, Ostovan H, 2014. Evaluation of tomato leaf miner resistance to common and recommended insecticides. M.Sc thesis, Agricultural entomology, Islamic Azad University, Fars science and research branch, Iran. Pang S, You W, Duan L, Song X, Li X, et al., 2012. Resistance selection and mechanisms of oriental tobacco budworm (Helicoverpa assulta Guenee) to indoxacarb. Pesticide Biochemistry and Physiology 103: 219–223. Picanço M, Bacci L, Crespo A, Miranda M, Martins JC, 2007. Effect of integrated pest management practices on tomato production and conservation of natural enemies. Agricultural and Forest Entomology 9: 327–335. Robertson JL, Preisler HK, 2007. Pesticide bioassays with arthoropods. CRC Press, Boca Raton, Florida USA. Roditakis E, Vasakis E, Garcia-Vidal L, Martínez-Aguirre MR, Rison JL, et al., 2018. A four-year survey on insecticide resistance and likelihood of chemical control failure for tomato leaf miner Tuta absoluta in the European/Asian region. Journal of Pest Science 91: 421–435. Roditakis E, Vasakis E, Grispou M, Stavrakaki M, Nauen R, et al., 2015. First report of Tuta absoluta resistance to diamide insecticides. Journal of Pest Science 88: 9–16. Roditakis E, Skarmoutsou C, Staurakaki M, Mart´ınez-Aguirre MR, Garc´ıa Vidal L, et al., 2012a. Determination of baseline susceptibility of European populations of Tuta absoluta (Meyrick) to indoxacarb and chlorantraniliprole using a novel dip bioassay method. Pest Management Science. Roditakis E, Skarmoutsou C, Staurakaki M, 2012b. Toxicity of insecticides to populations of tomato borer Tuta absoluta (Meyrick) from Greece. Pest Management Science 69: 834–840. Roditakis E, Mavridis K, Riga M, Vasakis E, Morou E, et al., 2016. Identification and detection of indoxacarb resistance mutations in the para sodium channel of the tomato leaf miner, Tuta absoluta. Pest Management Science 73: 1679–1688. Santos MS, Zanardi OZ, Pauli KS, Forim MR, Yamamoto PT, et al., 2015. Toxicity of an azadirachtin-based biopesticide on Diaphorina citri Kuwayama (Hemiptera: Liviidae) and its ectoparasitoid Tamarixia radiata (Waterston) (Hymenoptera: Eulophidae), Crop Protection 74: 116–123. Sayyed AH, Ahmad M, Saleem MA, 2008. Cross-resistance and genetics of resistance to indoxacarb in Spodoptera litura (Lepidoptera: Noctuidae). Journal of Economic Entomology 101: 472–9. Sheikhigarjan A, Rahmani M, Imani S, Jvadzadeh M, 2018. Toxicity of some new generation insecticides against tomato leaf miner moth, Tuta absoluta (Meyrick) under laboratory and greenhouse conditions. Journal of Applied Research in Plant Protection 7 (1): 99–108. Shono T, Zhang L, Scott JG, 2004. Indoxacarb resistance in the house fly, Musca domestica. Pesticide Biochemistry and Physiology 80: 106–112. Silva GA, Picanço MC, Bacci L, Crespo ALB, Rosado JF, et al., 2011. Control failure likelihood and spatial dependence of insecticide resistance in the tomato pinworm, Tuta absoluta. Pest Management Science 67: 913–920. Silva JE, Assis CP, Ribeiro LM, Siqueira HA, 2016. Field-evolved resistance and cross-resistance of Brazilian Tuta absoluta (Lepidoptera: Gelechiidae) populations to diamide insecticides. Journal of Economic Entomology 109 (5): 2190–2195. Silva WM, Berger M, Bass C, Balbino VQ, Amaral MH, et al., 2015. Status of pyrethroid resistance and mechanisms in Brazilian populations of Tuta absoluta. Pesticide Biochemistry and Physiology 122: 8–14. Silver KS, Song W, Nomura Y, Salgado VL, Dong K, 2010. Mechanism of action of sodium channel blocker insecticides (SCBIs) on insect sodium channels. Pesticide Biochemistry and Physiology 97: 87–92. Taleh M, Rafiee Dastjerdi H, Naseri B, Ebadollahi A, Sheikhi Garjan A, et al., 2021. Toxicity and biochemical effects of emamectin benzoate against Tuta absoluta (Meyrick) alone and in combination with some conventional insecticides. Physiological Entomology 9 (4): 699–709. Tomé HVV, Martins JC, Corrêa AS, Galdino TVS, Picanço MC, et al., 2013. Azadirachtin avoidance by larvae and adult females of the tomato leaf miner Tuta absoluta, Crop Protection 46: 63–69. Tropea G, Siscaro G, Biondi A, Zappalà L, 2012. Tuta absoluta, a South American pest of tomato now in the EPPO region: biology, distribution and damage. EPPO bulletin 42 (2): 205–210. Ullah S, Ejaz M, Shad SA, 2017. Study of synergism, antagonism, and resistance mechanisms in insecticide-resistant Oxycarenus hyalinipennis (Hemiptera: Lygaeidae). Journal of Economic Entomology 110: 615–623. Wu S, Kostromytska O, Koppenhöfer AM, 2017. Synergistic combinations of a pyrethroid insecticide and an emulsifiable oil formulation of Beauveria bassiana to overcome insecticide resistance in Listronotus maculicollis (Coleoptera: Curculionidae). Journal of Economic Entomology 110: 1794–1802. Yalcin M, Mermer S, Kozaci LD, Turgut C, 2015. Insecticide resistance in two populations of Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae) from Turkey. Turkish Journal of Entomology 39 (2): 137–145. Yu YY, Ting LCH, 2019. Synergistic effect and field control efficacy of the binary mixture of permethrin and chlorpyrifos to brown planthopper (Nilaparvata lugens). Journal of Asia-Pacific Entomology 22: 67–76. Zhong B, Lv C, Qin W, 2017. Effectiveness of the botanical insecticide azadirachtin against Tirathaba rufivena (Lepidoptera: Pyralidae). The Florida Entomologist 100 (2): 215–218. Zhu YC, Yao J, Adamczyk J, Luttrell R, 2017. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera). Plos One 12 (5): 0176837. Zibaee I, Mahmood K, Esmaeily M, Bandani AR, Kristensen M, 2017. Organophosphate and pyrethroid resistances in the tomato leaf miner Tuta absoluta (Lepidoptera: Gelechiidae) from Iran. Journal of Applied Entomology 1–11. | ||
آمار تعداد مشاهده مقاله: 1,020 تعداد دریافت فایل اصل مقاله: 651 |