
تعداد نشریات | 44 |
تعداد شمارهها | 1,353 |
تعداد مقالات | 16,546 |
تعداد مشاهده مقاله | 53,680,277 |
تعداد دریافت فایل اصل مقاله | 16,169,735 |
تصفیه فاضلاب حاوی آلاینده سخت تجزیه پذیر از طریق فرایند اکسیداسیون پیشرفته ازن زنی | ||
نشریه مهندسی عمران و محیط زیست | ||
مقاله 2، دوره 54، شماره 116، 1403، صفحه 15-24 اصل مقاله (1.27 M) | ||
نوع مقاله: مقاله کامل پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jcee.2023.53797.2192 | ||
نویسندگان | ||
امیر مسعود یاسری1؛ فرهاد قادری* 1؛ بهنوش خطائی2 | ||
1دانشکده مهندسی عمران، دانشگاه صنعتی نوشیروانی بابل | ||
2دانشکده مهندسی علوم زمین، دانشگاه صنعتی اراک | ||
چکیده | ||
کلروفنل ها از آلاینده های آلی سخت تجزیه پذیر هستند که با طول عمر بالا و تجزیه پذیری کم، در محیط زیست، خطرات بسیاری برای جانداران به وجود می آورند. ازن زنی یکی از روش های اکسیداسیون پیشرفته می باشد که دارای قدرت بالایی برای حذف این نوع آلاینده ها است. در این پژوهش حذف 4-کلروفنل (4-Chlorophenol) با فرایند ازنزنی بررسی شده است. با توجه به مدل فیزیکی فرایند، مدل ریاضی راندمان حذف آلاینده با استفاده از روش سطح پاسخ ارائه شده است. پارامترهای زمان، غلظت 4- کلروفنل، مقدار گاز ازن ورودی و pH به عنوان پارامترهای مستقل و راندمان حذف آلاینده به عنوان پارامتر وابسته در نظر گرفته شد. بدین ترتیب، اثر هر یک از متغیرهای مستقل و اثر هم زمان آنها بر متغیر وابسته و همچنین اثر متغیرهای مستقل بر یکدیگر نیز ارزیابی شده است. جهت انجام آزمایش ها از راکتور ناپیوسته استفاده گردید. با توجه به نتایج آزمایش ها، شرایط بهینه آزمایش در غلظت آلاینده برابر 35 میلیگرم بر لیتر، pH برابر 11، مقدار گاز ازن 5 گرم بر ساعت و زمان 30 دقیقه به دست آمد که منجربه حذف 52/93% آلاینده شد. | ||
کلیدواژهها | ||
فاضلاب؛ ازن زنی؛ اکسیداسیون پیشرفته؛ آلاینده سخت تجزیه پذیر؛ طراحی آزمایش | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Ashrafi SD, Kamani H, Arezomand, HS, Yousefi N, Mahvi AH, “Optimization and modeling of process variables for adsorption of Basic Blue 41 on NaOH-modified rice husk using response surface methodology”, Desalination and Water Treatment, 2016, 57 (30), 14051-14059. https://doi.org/10.1080/19443994.2015.1060903 Babanezhad E, Amini Rad H, Hosseini Karimi SS, Qaderi F, “Investigating nitrogen removal using simultaneous nitrification-denitrification in transferring wastewater through collection networks with small-diameter pipes”, Water Pract Technol, 2017, 12, 396-405. https://doi.org/10.2166/wpt.2017.044 Bustillo-Lecompte C, “Advanced Oxidation Processes: Applications, Trends, and Prospects”, IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.85681 Chen X, Zhan S, Chen D, He C, Tian S, Xiong Y, “Grey Fe-CeO2-σ for boosting photocatalytic ozonation of refractory pollutants: Roles of surface and bulk oxygen vacancies”, Applied Catalysis B: Environmental, 2021, 286, 119928. https://doi.org/10.1016/j.apcatb.2021.119928 Cheng B, Zhu N, Fan R, Zhou C, Zhang G, Li W, Ji K, “Computer aided optimum design of rubber recipe using uniform design”, Polymer testing, 2002, 21 (1), 83-88. https://doi.org/10.1016/S0142-9418(01)00052-6 Cheng Y, Sun H, Jin W, Xu N, “Photocatalytic degradation of 4-chlorophenol with combustion synthesized TiO2 under visible light irradiation”, Chemical Engineering Journal, 2007, 128 (2-3), 127-133. https://doi.org/10.1016/j.cej.2006.09.009 Dabbaghi F, Rashidi M, Nehdi ML, Sadeghi H, Karimaei M, Rasekh H, Qaderi F, “Experimental and informational modeling study on flexural strength of eco-friendly concrete incorporating coal waste”, Sustainability, 2021, 13 (13), 7506. https://doi.org/10.3390/su13137506 Dixit A, Mungray AK, Chakraborty M, “Photochemical oxidation of phenol and chlorophenol by UV/H2O2/TiO2 process: a kinetic study”, 2nd International Conference on Chemical, Biological and Environmental Engineering, 2010, IEEE, 153-157. https://doi.org/10.1109/ICBEE.2010.5650921 Ebrahimi M, Qaderi F, “Determination of the most effective control methods of SO2 pollution in Tehran based on adaptive neuro-fuzzy inference system”, Chemosphere, 2021, 263, 128002. https://doi.org/10.1016/j.chemosphere.2020.128002 Ebrahimi Ghadi M, Qaderi F, Babanezhad E, “Prediction of mortality resulted from NO2 concentration in Tehran by Air Q+ software and artificial neural network”, International Journal of Environmental Science and Technology, 2019, 16 (3), 1351-1368. https://doi.org/10.1007/s13762-018-1818-4 Essam T, Amin MA, El Tayeb O, Mattiasson B, Guieysse B, “Sequential photochemical-biological degradation of chlorophenols”, Chemosphere, 2007, 66 (11), 2201-2209. https://doi.org/10.1016/j.chemosphere.2006.08.036 Fan W, An W, Huo M, Xiao D, Lyu T, Cui J, “An integrated approach using ozone nanobubble and cyclodextrin inclusion complexation to enhance the removal of micropollutants”, Water Research, 2021, 196, 117039. https://doi.org/10.1016/j.watres.2021.117039 Fard ED, Jafari AJ, Kalantari RR, Gholami MITRA, Esrafili A, “Photocatalytic removal of aniline from synthetic wastewater using ZnO nanoparticle under ultraviolet irradiation”, Iranian Journal of Health and Environment, 2012, 5 (2), 167-178. Ferreira SC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, da Silva EP, Portugal LA, Dos Reis PS, Souza AS, Dos Santos WNL, “Box-Behnken design: an alternative for the optimization of analytical methods”, Analytica Chimica Acta, 2007, 597 (2), 179-186. https://doi.org/10.1016/j.aca.2007.07.011 Gholizadeh AM, Kermani M, Gholami M, Farzadkia M, “Comparative investigation of 2-ChloropHenol and 4-Chrorophenol removal using granulated activated Carbon and Rice Husk Ash”, Tolooebehdasht, 2013, 11 (3), 66-78. Granato D, Ribeiro JCB, Castro IA, Masson ML, “Sensory evaluation and physicochemical optimization of soy-based desserts using response surface methodology”, Food Chemistry, 2010, 121 (3), 899-906. https://doi.org/10.1016/j.foodchem.2010.01.014 Guzmán IC, Rodríguez JL, Poznyak T, Chairez I, Hernández I, Hernández RT, “Catalytic ozonation of 4-chlorophenol and 4-phenolsulfonic acid by CeO2 films”, Catalysis Communications, 2020, 133, 105827. https://doi.org/10.1016/j.catcom.2019.105827 Häggblom M, Salkinoja-Salonen M, “Biodegradability of chlorinated organic compounds in pulp bleaching effluents”, Water Science and Technology, 1991, 24 (3-4), 161-170. https://doi.org/10.2166/wst.1991.0472 Kermani M, Gholami M, Gholizade A, Farzadkia M, Esrafili A, “Effectiveness of Rice Husk Ash in Removal of Phenolic Compounds from Aqueous Solutions, Equilibrium and Kinetics Studies”, Iranian Journal of Health and Environment, 2012, 5 (2). Khalegh R, Qaderi F, “Optimization of the effect of nanoparticle morphologies on the cost of dye wastewater treatment via ultrasonic/ photocatalytic hybrid process”, Applied Nanoscience, 2019, 9, 1869-1889. https://doi.org/10.1007/s13204-019-00984-9 Liang Z, Xu X, Cao R, Wan Q, Xu H, Wang J, Lin Y, Huang T, Wen G, “Synergistic effect of ozone and chlorine on inactivating fungal spores: Influencing factors and mechanisms”, Journal of Hazardous Materials, 2021, 420, 126610. https://doi.org/10.1016/j.jhazmat.2021.126610 López A, Pic JS, Benbelkacem H, Debellefontaine H, “Influence of t-butanol and of pH on hydrodynamic and mass transfer parameters in an ozonation process”, Chemical Engineering and Processing: Process Intensification, 2007, 46 (7), 649-655. https://doi.org/10.1016/j.cep.2006.08.010 Miranzadeh M, Afshari F, Khataei B, Kassaee M, “Adsorption and photocatalytic removal of arsenic from water by a porous and magnetic nanocomposite: Ag/TiO2/Fe3O4@ GO”, Advanced Journal of Chemistry, Section A, 2020, 3 (4), 408-421. https://doi.org/10.33945/SAMI/AJCA.2020.4.3 Mohammadi A, Asgari G, Almasi H, “Removal of 2, 4 di-chlorophenol using persulfate activated with ultrasound from aqueous solutions”, Journal of Environmental Health Engineering, 2014, 1 (4), 259-270. Mourabet M, El Rhilassi A, El Boujaady H, Bennani-Ziatni M, El Hamri R, Taitai A, “Removal of fluoride from aqueous solution by adsorption on apatitic tricalcium phosphate using Box-Behnken design and desirability function”, Applied Surface Science, 2012, 258 (10), 4402-4410. https://doi.org/10.1016/j.apsusc.2011.12.125 Pera-Titus M, Garcı́a-Molina V, Baños MA, Giménez J, Esplugas S, “Degradation of chlorophenols by means of advanced oxidation processes: a general review”, Applied Catalysis B: Environmental, 2004, 47 (4), 219-256. https://doi.org/10.1016/j.apcatb.2003.09.010 Schumacher J, Pi YZ, Jekel M, “Ozonation of persistent DOC in municipal WWTP effluent for groundwater recharge”, Water Science and Technology, 2004, 49 (4), 305-310. https://doi.org/10.2166/wst.2004.0291 Sheikholeslami Z, Yousefi Kebria D, Qaderi F, “Application of γ-Fe2O3 nanoparticles for pollution removal from water with visible light”, Journal of Molecular Liquids, 2020, 299, 112-118. https://doi.org/10.1016/j.molliq.2019.112118 Tamadoni A, Qaderi F, “Optimization of soil remediation by ozonation for PAHs contaminated soils”, Ozone: Science and Engineering, 2019, 41 (5), 454-472. https://doi.org/10.1080/01919512.2019.1615865 Tavakoli Moghadam M, Qaderi F, “Modeling of petroleum wastewater treatment by Fe/Zn nanoparticles using the response surface methodology and enhancing the efficiency by scavenger”, Results in Physics, 2019, 15, 102566. https://doi.org/10.1016/j.rinp.2019.102566 Trapido M, Veressinina Y, Hentunen JK, Hirvonen A, “Ozonation of chlorophenols: kinetics, by-products and toxicity”, Environmental technology, 1997, 18 (3), 325-332. https://doi.org/10.1080/09593331808616543 Wang L, Qi C, Lu Y, Arowo M, Shao L, “Degradation of Bisphenol A by ozonation in a rotating packed bed: Modeling by response surface methodology and artificial neural network”, Chemosphere, 2022, 286, 131702. https://doi.org/10.1016/j.chemosphere.2021.131702 Yang J, Luo C, Li T, Cao J, Dong W, Li J, Ma J, “Superfast degradation of refractory organic contaminants by ozone activated with thiosulfate: Efficiency and mechanisms”, Water Research, 2020, 176, 115751. https://doi.org/10.1016/j.watres.2020.115751
| ||
آمار تعداد مشاهده مقاله: 502 تعداد دریافت فایل اصل مقاله: 247 |