- [1] F. Abbasi and T. Allahviranloo, Computational procedure for solving fuzzy equations, Soft Computing, 25(2021), 2703-2717.
- [2] S. Abbasbandy and T. Allahviranloo, Numerical solutions of fuzzy differential equations by Taylor method, Journal of Computational Methods in Applied mathematics, 2(2002), 113-124.
- [3] M. Akram, m-Polar fuzzy graphs, Studies in Fuzziness and Soft Computing, 371 (2019), Springer.
- [4] M. Akram, D. Saleem, and T. Allahviranloo, Linear system of equations in m-polar fuzzy environment, Journal of Intelligent and Fuzzy Systems, 37(6) (2019), 8251-8266.
- [5] M. Akram and G. Shahzadi, Certain characterization of m-polar fuzzy graphs by level graphs, Punjab University Journal of Mathematics, 49(1) (2017), 1-12.
- [6] T. Allahviranloo, N. Ahmady, and E. Ahmady, Numerical solution of fuzzy differential equations by predictor- corrector method, Information Sciences, 177 (2007), 1633-1646.
- [7] T. Allahviranloo, Z. Gouyandeh, and A. Armand, A full fuzzy method for solving differential equation based on taylor expansion, Journal of Intelligent and Fuzzy Systems, 29 (2015), 1039-1055.
- [8] G. A. Anastassiou, Numerical initial value problems in ordinary differential equations, Prentice Hall, Englewood Clifs, (1971).
- [9] A. Armand, T. Allahviranloo, and Z. Gouyandeh, Some fundamental results of fuzzy calculus, Iranian Journal of Fuzzy Systems, 15(3) (2018), 27-46.
- [10] A. Arman, T. Allahviranloo, S. Abbasbandy, and Z. Gouyandeh, The fuzzy generalized Taylor’s expansion with application in fractional differential equations, Iranian Journal of Fuzzy Systems, 16(2) (2019), 55-72.
- [11] B. Bede, Note on ”Numerical solutions of fuzzy differential equations by predictor-corrector method”, Information Sciences, 178 (2008), 1917-1922.
- [12] B. Bede and S. G. Gal, Generalization of the differentiabilty of fuzzy number valued function with application to fuzzy differential equations, Fuzzy Sets and Systems, 151 (2005), 581-599.
- [13] B. Bede, I. J. Rudas, and A. L. Bencsik, First order linear fuzzy differential equations under generalized differen- tiability, Information Sciences, 177 (2007), 1648-1662.
- [14] B. Bede and L. Stefanini, Generalized differentiability of fuzzy-valued functions, Fuzzy Sets and Systems, 230 (2013), 119-141.
- [15] S. S. Behzadi and T. Allahviranloo, Solving fuzzy differential equations by using Picard method, Iranian Journal of Fuzzy System, 13(3) (2016), 71-81.
- [16] Y. C. Cano and M. S. Flores, On new solutions of fuzzy differential equations, IEEE Transaction on System Man and Cybernetics, Part-B Cybernetics, 38(1) (2008), 112-119.
- [17] Y. Chalco-Cano, H. Roman-Flores, and M. D. Jimenez-Gamero, Generalized derivative and π-derivative for set- valued functions, Information Sciences, 181 (2011), 2177-2188.
- [18] S. S. L. Chang and L. A. Zadeh, On fuzzy mapping and control, IEEE Transaction on Systems, Man and Cyber- netics, 2 (1972), 30-34.
- [19] J. Chen, S. Li, S. Ma, and X. Wang, m-polar fuzzy sets: An extension of bipolar fuzzy sets, The Scientific World Journal, (2014).
- [20] D. Dubois and H. Prade, Towards fuzzy differential calculus III, Fuzzy Sets and Systems, 8(3) (1982), 225-233.
- [21] S. Effati and M. Pakdaman, Artificial neural network approach for solving fuzzy differential equations, Information Science, 180 (2010), 1434-1457.
- [22] J. Elmi and M. Eftekhari, Dynamic ensemble selection based on hesitant fuzzy multiple criteria decision making, Soft Computing, 24 (2020), 12241-12253.
- [23] J. F. Epperson, An introduction to numerical methods and analysis, John Wiley and Sons, 2013.
- [24] O. S. Fard and T. Feuring, Numerical solutions for linear system of first order fuzzy differential equations, Infor- mation Science, 181 (2011), 4765-4779.
- [25] N. A. Gasilov, A. G. Fatullayev, S. E. Amrahov, and A. Khastan, A new approach to fuzzy initial value problem, Soft Computing, 18 (2014), 217-225.
- [26] B. Ghazanfari and A. Shakerami, Numerical solution of fuzzy differential equations by extended Runge-kutta like formulae of order 4, Fuzzy Sets and Systems, 189 (2012), 74-91.
- [27] B. Ghazanfari and A. Shakerami, Numerical solution of second order fuzzy differential eqaution using improved Runge-Kutta nystrom method, Mathematical Problems in Engineering, 2013.
- [28] Z. Guang-Quan, Fuzzy continuous function and its properties, Fuzzy sets and Systems, 43(2) (1991), 159- 171.
- [29] K. Ivaz, A. Khastan, and J. J. Neito, A numerical method for fuzzy differential equations and hybrid fuzzy differential equations, Abstract and Applied Analysis, Article ID 735128 10 (2013).
- [30] T. Jayakumar, K. Kanagarajan, and S. Indrakumar, Numerical solution of nth-order fuzzy differential equation by runge-kutta method of order five, International Journal of Mathematical Analysis, 6 (2012), 2885- 2896.
- [31] O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301-317.
- [32] M. Ma, M. Friedman, and M. Kandel, Numerical solutions of fuzzy differential equations, Fuzzy Sets and Systems, 105 (1999), 133-138.
- [33] J. J. Nieto, The Cauchy problem for continuous differential equations, Fuzzy Sets and Systems, 102 (1999), 259-262.
- [34] S. Palligkinis, G. Papageorgious, and I. Famelis, Runge-Kutta method for fuzzy differential equations, Applied Mathematics and Computations, 209 (2009), 97-105.
- [35] N. Parandin, Numerical solutionof fuzzy differential equations of nth order by Runge-Kutta method, Neural Com- puting Applications, 181 (2011), 4765-4779.
- [36] S. Pederson and M. Sambandham, The Runge-Kutta method for hybrid fuzzy differential equations, Nonlinear Analysis: Hybrid Systems, 2 (2008), 626-634.
- [37] S. Pederson and M. Sambandham, Numerical solution of hybrid fuzzy differential equation IVPs by characteriza- tion, Information Science, 179 (2009), 319-328.
- [38] M. Saqib, M. Akram, S. Bashir, and T. Allahviranloo, Numerical solution of bipolar fuzzy initial value problem, Journal of Intelligent and Fuzzy System, 40(1) (2021), 1309-1341.
- [39] L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differ- ential equations, Nonlinear Analysis, 71 (2009), 1311-1328.
- [40] S. Tapaswini and S. Chakraverty, A new approach to fuzzy initial value problem by improved Euler method, Fuzzy Information and Engineering, 4(3) (2012), 293-312.
- [41] S. Tapaswini and S. Chakraverty, Euler based new solution method for fuzzy initial value problems, International Journal of Artificial Intelligence and Soft Computing, 4 (2014), 58-79.
- [42] S. Tapaswini, S. Chakraverty, and T. Allahviranloo, A new approach to nth order fuzzy differential equations, Fuzzy Sets and Systems, 28(2) (2017), 278-300.
- [43] C. Wu and Z. Gong, On henstock integral of fuzzy number valued functions, Fuzzy Sets and Systems, 120 (2001), 523-532.
- [44] L. A. Zadeh, Fuzzy sets, Information and control, 8 (1965), 338-353.
|