تعداد نشریات | 43 |
تعداد شمارهها | 1,268 |
تعداد مقالات | 15,628 |
تعداد مشاهده مقاله | 51,680,860 |
تعداد دریافت فایل اصل مقاله | 14,565,805 |
مروری بر تایرهای غیرپنوماتیک ساخته شده از فرامواد با پرینتر سه بعدی | ||
مهندسی مکانیک دانشگاه تبریز | ||
دوره 52، شماره 4 - شماره پیاپی 101، بهمن 1401، صفحه 311-320 اصل مقاله (399.98 K) | ||
نوع مقاله: مقاله مروری | ||
شناسه دیجیتال (DOI): 10.22034/jmeut.2023.52205.3129 | ||
نویسندگان | ||
شکوه دزیانیان1؛ محمد آزادی* 2؛ سید محمد جواد رضوی3 | ||
1دانشجو کارشناسی ارشد، مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران | ||
2دانشیار، گروه مهندسی مکانیک، دانشگاه سمنان، سمنان، ایران | ||
3دانشیار، دانشکده مهندسی مکانیک و صنعت، دانشگاه نروژی علم و فناوری، تروندهام، نروژ | ||
چکیده | ||
در این مقاله، مروری بر انواع فرامواد و تایرهای غیرپنوماتیک صورت گرفته است. نتایج نشان داده است، مقاومت غلتشی در تایرهای پنوماتیک بین ۴ تا 5 درصد است در حالی که در تایرهای غیرپنوماتیک کمتر از 3 درصد است. در نتیجه تایرهای غیرپنوماتیک مصرف سوخت کمتر و راندمان بالاتری نسبت به تایرهای پنوماتیک دارند. همچنین حداکثر تنش در تایر غیرپنوماتیک تولید شده به روش سهبعدی ۱2 درصد افزایش یافته است با این حال حدودا ۸2 درصد سفتی عمودی بهبود یافته است. استفاده از فرامواد در لایه برشی در صورتی که انرژی کرنشی در لایه میانی ۵0 درصد کمتر از دیگر لایهها باشد، توانایی کنترل ویژگیهای خمش برشی را دارد. علاوه بر این نشان داده شده است، توانایی بالای تولیدات افزایشی در تولید ساختارهای پیچیده باعث شده پرینترهای سهبعدی روش مناسبی برای تولید این نوع تایرها باشند. در مواردی تایرهای غیرپنوماتیک با تحمل دمای بالا برای کاربرد در هوافضا نیز، اقداماتی صورت گرفته است. | ||
کلیدواژهها | ||
تایر خودرو؛ تایر غیرپنوماتیک؛ فرامواد؛ پرینتر سهبعدی؛ تولید افزایشی؛ کاربرد هوافضایی | ||
مراجع | ||
[1] Azadi M., An overview of the applications, design processes and fabrication of metamaterials using additive manufacturing techniques and 3D printers. Iran Polymer Technology Research and Development, Vol. 6, pp. 15-26, 2021. [2] Dezianian S., and Azadi M., A review on metamaterial types. additive manufacturing technique and its application in automotive industry. Vol. 30, pp. 70-80, 2021. DOI: 10.30506/MMEP. 2021.535668.1937 [3] Li T., Hu X., Chen Y., and Wang L., Harnessing out-of-plane deformation to design 3D architected lattice metamaterials with tunable Poisson’s ratio. Sciense Reports, Vol. 7, pp. 1–10, 2017. doi: 10.1038/s41598-017-09218-w. [4] Liu R., Ji C., Zhao Z., and Zhou T., Metamaterials Reshape and Rethink. Engineering. Vol. 1, pp. 179–184, 2015. doi: 10.15302/J-ENG-2015036. [5] Jung J., Kim H. G., Goo S., Chang K. J., and Wang S., Realisation of a locally resonant metamaterial on the automobile panel structure to reduce nois e radiation. Mechanic System Signal Process. Vol. 122, pp. 206–231, 2019. doi: 10.1016/J.YMSSP.2018.11.050. [6] Wang J., Dai G., and Huang J., Thermal Metamaterial: Fundamental, Application, and Outlook. iScience. Vol. 23, 101637, 2020. doi: 10.1016/J.ISCI.2020.101637. [7] Wu W., Hu W., Qian G., Liao H., Xu X., and Berto F., Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review. Materials & Design, Vol. 180, 107950, 2019. doi: 10.1016/J.MATDES.2019.107950. [8] Grima J. N., Caruana-Gauci R., Attard D., and Gatt R., Three-dimensional cellular structures with negative Poisson’s ratio and negative compressibility properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. Vol. 468, pp. 3121–3138, 2012. doi: 10.1098/RSPA.2011.0667. [9] Lee J. W., Soman P., Park J. H., Chen S., and Cho D. W., A Tubular Biomaterial Construct Exhibiting a Negative Poisson’s Ratio. PLoS One. Vol. 11, 0155681, 2016. doi: 10.1371/JOURNAL.PONE.0155681. [10] Park Y. J., and Kim J. K., The effect of negative Poisson’s ratio polyurethane scaffolds for articular cartilage tissue engineering applications. Advances in Materials Science and Engineering, 853289, 2013. doi: 10.1155/2013/853289. [11] Wang W., He C., Xie L., and Peng Q., The temperature-sensitive anisotropic negative poisson’s ratio of carbon honeycomb. Nanomaterials, Vol. 9, pp. 1-4, 2019. doi: 10.3390/nano9040487. [12] Grima J. N., Caruana-Gauci R., Attard D., and Gatt R., Three-dimensional cellular structures with negative Poisson’s ratio and negative compressibility properties. Proceedings of the Royal Society A: Mathematical. Physical and Engineering Sciences. Vol. 468, pp. 3121–3138, 2012. doi: 10.1098/rspa.2011.0667. [13] Li Z., Luo Z., Zhang L. C., and Wang C. H., Topological design of pentamode lattice metamaterials using a ground structure method. Materials & Design. Vol. 202, 109523, 2021. doi: 10.1016/J.MATDES.2021.109523. [14] Kadic M., Bückmann T., Stenger N., Thiel M., and Wegener M., the practicability of pentamode mechanical metamaterials. Applied Physics Letters. Vol. 100, 2012. doi: 10.1063/1.4709436. [15] Hedayati R., Leeflang A. M., and Zadpoor A. A., Additively manufactured metallic pentamode meta-materials. Applied Physics Letters. Vol. 110, 091905, 2017. doi: 10.1063/1.4977561. [16] Xie Y. M., Wang W., He C., and Peng Q., Designing orthotropic materials for negative or zero compressibility. International Journal of Solids and Structures. Vol. 51, pp. 4038–4051, 2014. doi: 10.1016/J.IJSOLSTR.2014.07.024. [17] Chen B., Chen L., Du B., Liu H., Li W., and Fang D., "Novel multifunctional negative stiffness mechanical metamaterial structure: Tailored functions of multi-stable and compressive mono-stable. Composites Part B: Engineering, Vol. 204, 108501, 2021. doi: 10.1016/J.COMPOSITESB.2020.108501. [18] Gatt R., and Grima J. N., Negative compressibility". Physica status solidi - Rapid Research Letters, Vol. 2, pp. 236–238, 2008. doi: 10.1002/PSSR.200802101. [19] Rashidi M., Zoali F., and Hajebrahimi F., Understanding the factors affecting tire durability and the relationship between them. Iran Iranian Rubber Magazine, Vol. 24, pp. 45-58, 2020. [20] Refai K., Brugger C., Montemurro M., and Saintier N., An experimental and numerical study of the high cycle multiaxial fatigue strength of titanium lattice structures produced by Selective Laser Melting. International Journal of Fatigue, Vol. 138, 105623, 2020. doi: 10.1016/j.ijfatigue.2020.105623. [21]Benedetti M., Plessis A., Ritchie R. O., Dallago M., Razavi S. M. J., and Berto F., Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Materials Science and Engineering Reports, Vol. 144, 100606, 2021. doi: 10.1016/j.mser.2021.100606. [22] Lumpe T. S., and Stankovic T., Exploring the property space of periodic cellular structures based on crystal networks. Proceedings of the National academy of Sciences of the United States of America. Vol. 118, 2003504118, 2021. doi:10.1073/pnas.2003504118. [23] دزیانیان ش.، مطالعه رفتار خستگی در مواد ساخته شده از روشهای تولید افزایشی، پایان نامه کارشناسی، دانشگاه سمنان، ۱۳۹۸ [24] Ngo T. D., Kashani A., Imbalzano G., Nguyen K. T. Q., and Hui D., Additive manufacturing (3D printing): A review of materials , methods , applications and challenges. Composites Part B. Vol. 143, pp. 172–196, 2018. doi: 10.1016/j.compositesb.2018.02.012. [25] Standardization Roadmap for Additive Manufacturing. Annual Book of ASTM Standard. pp. 1–203, 2017. [26] Mulakkal M. C., Trask R. S., Ting V. P., and Seddon A. M., Responsive cellulose-hydrogel composite ink for 4D printing. Materials & Design. Vol. 160, pp. 108–118, 2018. doi: 10.1016/j.matdes.2018.09.009. [27]Liu Y., Zhang W., Zhang F., Leng J., Pei S., Wang L., Jia X., Cotton C., Sun B., and Chou T. W., Microstructural design for enhanced shape memory behavior of 4D printed composites based on carbon nanotube/polylactic acid filament. Composites Science and Technology. Vol. 181, 107692, 2019. doi: 10.1016/j.compscitech.2019.107692. [28] Liu K., Han l., Hu W., Ji L., Zhu S., Wan Z., Yong X., Wei Y., Dai Z., Zhao Z., Li Z., and Wang Pand Tao R., 4D printed zero Poisson’s ratio metamaterial with switching function of mechanical and vibration isolation performance. Materials & Design. Vol. 196, 109153, 2020. doi: 10.1016/J.MATDES.2020.109153. [29]Invernizzi M., Turri S., Levi M., and Suriano R., Processability of 4D printable modified polycaprolactone with self-healing abilities. Materials Today: Proceedings. Vol. 7, pp. 508–515, 2019. doi: 10.1016/j.matpr.2018.12.001. [30] Choong Y. Y. C., Maleksaeedi S., Eng H., Wei J., and Su P. C., 4D printing of high performance shape memory polymer using stereolithography. Materials & Design. Vol. 126, pp. 219–225, 2017. doi: 10.1016/j.matdes.2017.04.049. [31]Rastogi P., and Kandasubramanian B., Adaptive metamaterials by functionally graded 4D printing. Chemical Engineering Journal. Vol. 366, pp. 264–304, 2019. doi: 10.1016/j.cej.2019.02.085. [32] Haleem A., Javaid M., and Vaishya R., 5D printing and its expected applications in Orthopaedics. Journal of Clinical Orthopaedics and Trauma. Vol. 10, pp. 809–810, 2019. doi: 10.1016/j.jcot.2018.11.014. [33] Ravinder Reddy P., and Anjani Devi P., Review on the advancements to additive manufacturing-4D and 5D printing. International Journal Mechanical and Production Engineering Research and Development. Vol. 8, pp. 397–402, 2018. doi: 10.24247/ijmperdaug201841. [34] Dezianian S., Azadi M., and Mohammadi Esfarjani S., An overview of the Additive manufacturing process with five-dimensional printers and their applications. Iran Polymer Technology; Research and Development. Vol. 6, pp. 51-60, 2021. [35] Vogiatzis P., Chen S., Wang X., Li T., andWang L., Topology optimization of multi-material negative Poisson’s ratio metamaterials using a reconciled level set method. CAD Computer Aided Design. Vol. 83, pp. 15–32, 2017. doi: 10.1016/j.cad.2016.09.009. [36] Li X., Yu S., Liu H., Lu M., and Chen Y., Topological mechanical metamaterials: A brief review. Current Opinion in Solid State and Materials Science. Vol. 24, 100853, 2020. doi: https://doi.org/10.1016/j.cossms.2020.100853 [37] Maharaj Y., and James K. A., Metamaterial topology optimization of nonpneumatic tires with stress and buckling constraints. International Journal for Numerical Methods in Engineering. Vol. 121, pp. 1410–1439, 2020. doi: 10.1002/NME.6273. [38] Bodaghi M., Damanpack A. R., Hu G. F., and Liao W. H., Large deformations of soft metamaterials fabricated by 3D printing. Materials & Design. Vol. 131, pp. 81–91, 2017. doi: 10.1016/J.MATDES.2017.06.002. [39] Yuan S., Shen F., Bai J., Chua C. K., Wei J., and Zhou K., 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization. Materials & Design. Vol. 120,. pp. 317–327, 2017. doi: 10.1016/J.MATDES.2017.01.098. [40] Zen A. O., Ganzosch G., Barchiesi E., Auhl D. W., and Mü Ller W. H., Investigation of deformation behavior of PETG-FDM-printed metamaterials with pantographic substructures based on different slicing strategies. Composites and Advanced Materials. Vol. 30, pp. 1–13, 2021. doi: 10.1177/26349833211016477. [41] Celik H. K., Tan Y. S., Seviour R., and Rennie A. E. W., Effect of Thermal and Mechanical Deformation of Metamaterial FDM Components - Lancaster EPrints. US – TURKEY Work. Rapid Technol. pp. 83–88, 2009. [42] Namvar N., Zolfagharian A., Vakili-Tahami F., and Bodaghi M., Reversible Energy Absorption of Elasto-plastic Auxetic, Hexagonal, and AuxHex Structures Fabricated by FDM 4D Printing. Smart Materials and Structures. pp. 3–15, 2022. doi: 10.1088/1361-665X/AC6291. [43] Wickeler A. L., and Naguib H. E., Novel origami-inspired metamaterials: Design, mechanical testing and finite element modelling. Materials & Design, Vol. 186, pp. 108242, 2020. doi: 10.1016/J.MATDES.2019.108242. [44] Tan X., Chen S., Wang B., Zhu S., Wu L., and Sun Y., Design, fabrication, and characterization of multistable mechanical metamaterials for trapping energy. Extreme Mechanics Letters. Vol. 28, pp. 8–21, 2019. doi: 10.1016/J.EML.2019.02.002. [45] Matlack K. H., Bauhofer A., Krödel S., Palermo A., and Daraio C., Composite 3D-printed metastructures for lowfrequency and broadband vibration absorption. Proceedings of the National academy of Sciences of the United States of America. Vol. 113, pp. 8386–8390, 2016. doi:10.1073/PNAS.1600171113/SUPPL_FILE/PNAS.1600171113.SM01.MOV. [46] Liu R., Xu S., Luo X., and Liu Z., Theoretical and numerical analysis of mechanical behaviors of a metamaterial-based shape memory polymer stent. Polymers (Basel). Vol. 12, 12081784, 2020. doi: 10.3390/polym12081784. [47] Gao S., Liu W., Zhang L., and Gain A. K., A new polymer-based mechanical metamaterial with tailorable large negative Poisson’s ratios. Polymers (Basel). Vol. 12, pp. 1–15, 2020. doi: 10.3390/polym12071492. [48] Savio G., Rosso S., Curtarello A., Meneghello R., and Concheri G., Implications of modeling approaches on the fatigue behavior of cellular solids. Additive Manufacturing. Vol. 25,. pp. 50–58, 2019. doi: 10.1016/j.addma.2018.10.047. [49]Sandberg U., The Airless Tire: Will this Revolutionary Concept be the Tire of the Future?. Modern Concepts in Material Science. Vol. 3, pp. 1-6, 2020. doi: 10.33552/MCMS.2020.03.000563. [50] Nasiri S., Sarkarizavar M., Abedini M., and Rafei M., Chassis and body technology, Tehran. 2017. [51] Gasmi A., Joseph P. F., Rhyne T. B., and Cron S. M., Development of a two-dimensional model of a compliant non-pneumatic tire. International Journal of Solids and Structures. Vol. 49, pp. 1723–1740, 2012. doi: 10.1016/J.IJSOLSTR.2012.03.007. [52] Gillespie T., fundamentals of vehicle dynamics, Society of Automotive Engineers. Warrendale. Vol. 114, pp. 335-375, 2017. [53] Shahdadi A., Ashofte A., and Nematolahi M., Real-time analysis of effective tire properties using smart tires. Iran Rubber Industry. Vol. 25, pp. 17–25, 2021. doi: 10.22034/IRM.2021.136710. [54] Ahmadi A., Masih Tehrani M., and Ebrahim Nejat Rafsanjani S., Investigation of tire wear process of heavy vehicles and off-road vehicles. Iran Rubber Industry. Vol. 25, pp. 37–48, 2021. doi: 10.22034/IRM.2021.136712. [55]Ju J., Kim D. M., and Kim K., Flexible cellular solid spokes of a non-pneumatic tire. Composite Structures. Vol. 94, pp. 2285–2295, 2012. doi: 10.1016/J.COMPSTRUCT.2011.12.022. [56] Jin X., Hou C., Fan X., Sun Y., Lv J., and Lu C., Investigation on the static and dynamic behaviors of non-pneumatic tires with honeycomb spokes. Composite Structures. Vol. 187, pp. 27–35, 2018. doi: 10.1016/J.COMPSTRUCT.2017.12.044. [57] Rusiński E., and Pietrusiak D., Proceedings of the 13th International Scientific Conference: Computer Aided Engineering, Lecture Notes in Mechanical Engineering, 2017. doi: 10.1007/978-3-319-50938-9. [58] Rashidi Moghadam M., Determining the factors affecting rolling resistance by analytical method. Iran Rubber Industry. Vol. 25, pp. 27–35, 2021. doi: 10.22034/IRM.2021.136711. [59] Nikravan G., Green tire technology". Iran Rubber Industry. Vol. 25, pp. 3-13, 2021. [60] Rashidi Moghadam M., Simulation of temperature distribution due to energy loss in cargo radial tire. Iran Rubber Industry. Vol. 25, pp. 57-63, 2022. [61] Jafferson J. M., and Sharma H., Design of 3D printable airless tyres using NTopology. Materials Today: Proceedings. Vol. 46, pp. 1147–1160, 2021. doi: 10.1016/J.MATPR.2021.02.058. [62]Mazur V. V., Experiments to Find the Rolling Resistance of Non-pneumatic Tires Car Wheels. Proceedings of the 5th International Conference on Industrial Engineering (ICIE 2019). Springer International Publishing. pp. 641-648, 2020. [63]Suvanjumrat C., and Rugsaj R., Study of 3D printing for forming spoke of non-pneumatic tire using finite element method. IOP Conference Series: Materials Science and Engineering. Vol. 1137, 012020, 2021. doi: 10.1088/1757-899x/1137/1/012020. [64]Rugsaj R., and Suvanjumrat C., Proper Radial Spokes of Non-Pneumatic Tire for Vertical Load Supporting by Finite Element Analysis. International Journal of Automotive Technology. Vol. 204,. pp. 801–812, 2019. doi: 10.1007/S12239-019-0075-Y. [65]Rugsaj R., and Suvanjumrat C., Dynamic Finite Element Analysis of Rolling Non-Pneumatic Tire. International Journal of Automotive Technology. Vol. 22, pp. 1011–1022, 2021. doi: 10.1007/s12239-021-0091-6. [66]Rugsaj R., and Suvanjumrat C., Determination of material property for non-pneumatic tire spokes by inverse method. Key Engineering Materials. Vol. 777, pp. 411–415, 2018. doi: 10.4028/www.scientific.net/KEM.777.411. [67] Ramachandran M., Nonlinear Finite Element Analysis of Tweel Geometric Parameter Modifications on Spoke Dynamics During High Speed Rolling. Msc Thesis, Mechanical Engineering , Clemson University. 2008 [68]Manibaalan C., Balamurugan S., and Joshi C.H., Static Analysis of Airless Tyres. International Journal of Scientific and Research Publications. Vol. 3, pp. 1–4 2013. [69] Zmuda M., Jackowski J., and Hryciów Z., Numerical research of selected features of the non-pneumatic tire. AIP Conference Proceedings. Vol. 2078, 020027, 2019. doi: 10.1063/1.5092030. [70] Ma J., Summers J., and Joseph P., Dynamic impact simulation of interaction between non-pneumatic tire and sand with obstacle. SAE 2011 World Congress and Exhibition. Vol. 12, 2011. doi: 10.4271/2011-01-0184. [71] Ma J., Summers J. D., and Joseph P. F., Numerical simulation of tread effects on the interaction between cellular shear band based non-pneumatic tire and sand. Proceedings of the ASME Design Engineering Technical Conference. Vol. 8, pp. 769–779, 2011. doi: 10.1115/DETC2011-47044. [72] Shankar P., Fazelpour M., and Summers J. D., An energy-based design approach for a meso-structure with high shear flexure. Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, pp. 4-7, 2013. doi: 10.1115/DETC2013-12292. [73] Ma J., Louis S., Summers J. D., and Joseph P. F., Numerical Investigation of Effect of Membrane on Thickness on the Performance of Cellular Shear Band Based non- pneumatic Tire. Proceedings of the ASME 2011 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. pp. 28-31, 2011. [74] Ma J., Kolla A., Summers J. D., Joseph P. F., Blouin V. Y., and Biggers S., Numerical simulation of new generation non-pneumatic tire (tweelTM) and sand. Proceedings of the ASME Design Engineering Technical Conference. Vol. 2, pp. 123–130, 2009. doi: 10.1115/DETC2009-87263. [75] Fazelpour M., and Summers J. D., Evolution of Meso-Structures for Non-Pneumatic Tire Development: A Case Study. Proceedings of the ASME 2014 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. pp. 17-20, 2014. doi: 10.1115/detc2014-34184. [76] Wei W., Kai Z., Shaoyi B., Lanchun Z., and Yongzhi W., Vibration performance analysis of vehicle with the non-pneumatic new mechanical elastic wheel in the impulse input experiment. Journal of Vibroengineering. Vol. 18. pp. 3970–3980, 2016. doi: 10.21595/jve.2016.16988. [77] Zhao Y., Du X., Lin F., Wang Q., and Fu H., Static stiffness characteristics of a new non-pneumatic tire with different hinge structure and distribution. Journal of Mechanical Science and Technology. Vol. 32. pp. 3057–3064, 2018. doi: 10.1007/s12206-018-0608-8. [78] Zhao Y. Q., Deng Y. J., Lin F., Zhu M. M., and Xiao Z., Transient Dynamic Characteristics of a Non-Pneumatic Mechanical Elastic Wheel Rolling Over a Ditch. International Journal of Automotive Technology. Vol. 193. pp. 499–508, 2018. doi: 10.1007/S12239-018-0048-6. [79] Deng Y., Zhao Y., Lin F., Xiao Z., Zhu M., and Li H., Simulation of steady-state rolling non-pneumatic mechanical elastic wheel using finite element method. Simulation Modelling Practice and Theory. Vol. 85. pp. 60–79, 2018. doi: 10.1016/j.simpat.2018.04.001. [80] Du X., Zhao Y., Wang Q., Fu H., and Lin F., Grounding characteristics of a non-pneumatic mechanical elastic tire in a rolling state with a camber angle. Journal of Mechanical Engineering. Vol. 65. pp. 287–296, 2019. doi: 10.5545/SV-JME.2018.5845. [81] Du X., Zhao Y., Lin F., Fu H., and Wang Q., Numerical and experimental investigation on the camber performance of a non-pneumatic mechanical elastic wheel. Journal of Brazilian Society of Mechanical Sciences and Engineering. Vol. 39. pp. 3315–3327, 2017. doi: 10.1007/S40430-016-0702-8/FIGURES/17. [82] Xiao Z., Zhao Y. Q., Lin F., Zhu M. M., and Deng Y. J., Studying the fatigue life of a non-pneumatic wheel by using finite-life design for life prediction. Journal of Mechanical Engineering. Vol. 64. pp. 56–67, 2018. doi: 10.5545/SV-JME.2017.4695. [83] Zhao Y. Q., Xiao Z., Lin F., Zhu M. M., and Deng Y. J., Influence analysis of machining and installation errors on the radial stiffness of a non-pneumatic mechanical elastic wheel. Chinese Journal of Mechanical Engineering. Vol. 31. pp. 1–9, 2018. doi: 10.1186/S10033-018-0273-Y/FIGURES/13. [84] Mathew N. J., Sahoo D. K., and Chakravarthy E. M., "Design and Static Analysis of Airlesstyre to Reduce Deformation. IOP Conference Series: Materials Science and Engineering. Vol. 197. 012042, 2017. doi: 10.1088/1757-899X/197/1/012042. [85] Zhang Z., Fu H., Zhao Q., Tan D., and Yang K., Pattern design and performance analysis of a flexible spoke bionic non-pneumatic tire. Journal of the Brazilian Society of Mechanical Sciences and Engineeringvol. Vol. 43. pp. 1-11, 2021. doi: 10.1007/s40430-020-02743-2. [86] Zhang Z., Fu H., Liang X., Chen X., and Tan D., Comparative Analysis of Static and Dynamic Performance of Nonpneumatic Tire with Flexible Spoke Structure. Journal of Mechanical Engineering. Vol. 66. pp. 458–466, 2020. doi: 10.5545/SV-JME.2020.6676. [87] Wang J., Yang B., Lin X., Gao L., Liu T., Lu Y., and Wang R., Research of TPU Materials for 3D Printing Aiming at Non-Pneumatic Tires by FDM Method. Polymer. Vol. 12. 12112492, 2020. doi: 10.3390/POLYM12112492. [88] Ganniari-Papageorgiou E., Chatzistergos P., and Wang X., The Influence of the Honeycomb Design Parameters on the Mechanical Behavior of Non-Pneumatic Tires. International Journal of Applied Mechanics. Vol. 12. 2050024, 2020. doi: 10.1142/S1758825120500246. [89] Zheng Z., Rakheja S., and Sedaghati R., Multi-axis stiffness and road contact characteristics of honeycomb wheels: A parametric analysis using Taguchi method. Composite Structures. Vol. 279. 114735, 2022. doi: 10.1016/J.COMPSTRUCT.2021.114735. [90] Fu H., Chen X., Zhao Q., Xiao Z., and Liang X., Fatigue life prediction and influencing factors analysis of mesh flexible spoke non-pneumatic tire. Advanced in Mechanical engineering. Vol. 13. pp. 1–10, 2021. doi: 10.1177/16878140211052454. | ||
آمار تعداد مشاهده مقاله: 320 تعداد دریافت فایل اصل مقاله: 207 |