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Abstract

..

In this work, a non-classical sinc-collocation method is used to find numerical solution of third-order boundary

value problems. The novelty of this approach is based on using the weight functions in the traditional sinc-
expansion. The properties of sinc-collocation are used to reduce the boundary value problems to a nonlinear system
of algebraic equations which can be solved numerically. In addition, the convergence of the proposed method is
discussed by preparing the theorems which show exponential convergence and guarantee its applicability. Several

examples are solved and the numerical results show the efficiency and applicability of the method.
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1. Introduction

Third-order differential equations arise in a variety of different areas of applied mathematics and physics, for
instance, in the deflection of a curved beam having a constant or varying cross section, aeroelasticity, electromagnetic
waves, a three layer beam, the theory of thin film flow, and incompressible flows [14, 19]. Since the boundary
value problems have wide applications in scientific research, therefore, faster and more accurate numerical solution of
boundary value problems is very important.

Some researchers have studied and numerically solved third order boundary value problems using different meth-
ods with different boundary conditions, for instance, finite difference [20], modified Adomian decomposition [9], Re-
producing kernel [14], nonpolynomial splines [6, 10], quintic splines [13], B-spline functions [4], Haar wavelets [8],
sinc-collocation method [22] and boundary shape function methods [15].

In recent years a variety of numerical methods based on sinc approximation have been developed. Sinc methods
were introduced by Frank stenger in [25, 26] and has been extended in [27]. In this paper we consider the following
class of third order boundary value problems:

Lx = εx′′′(t) + p1(t)x
′′(t) + p2(t)x

′(t) = g(t, x), (1.1)

subject to one of the following boundary conditions

(i) x(0) = α, x′(0) = β, x(1) = γ, (1.2)

(ii) x(0) = α, x′(0) = β, x′(1) = γ, (1.3)

(iii) x′(0) = α, x(1) = β, x′(1) = γ, (1.4)
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(iv) x(0) = α, x(1) = β, x′(1) = γ, (1.5)

where p1 and p2 are continuous functions on (0, 1), 0 < ε ≤ 1, and the function g(t, x) satisfies the Lipschitz condition:
|g(t, x)− g(t, x∗)| ≤ l|x− x∗| and α, β and γ are constants.

Here, we use a non-classical sinc-collocation method for the solution of problem (1.1) subject to one of the boundary
conditions (1.2)-(1.5). The idea of employing nonclassical weight functions for the first time has been used by Shizgal
for solving the Boltzmann equation and related problems [24]. Alipanah et.al used the nonclassical pseudospectral
method to solve the brachistochrone problem [1]. Our method reduces the solution of equation (1.1) with each of
the boundary conditions (1.2)-(1.5) to a set of algebraic equations. We used the non-classical sinc basis functions
because of their better accuracy compared to the classic. The numerical results that we illustrate the high accuracy
and robustness of the method.

The main difficulty of the problem (1.1) is when 0 < ε < 1, in which case we call it the singular perturbed boundary
value problem. Our method for solving such problems has much better accuracy compared to some other methods.
Youssri et.al used the modified lucas polynomials method for the numerical treatment of second-order boundary value
problems [30]. Khan et.al used the non-polynomial cubic spline method for the solution of higher order boundary
value problems [11]. Taherkhani et.all used a pseudospectral sinc method for numerical investigation of the nonlinear
time-fractional Klein-Gordon and Sine-Gordon equations [28]. Babolian et.al used a sinc-Galerkin technique for the
numerical solution of a class of singular boundary value problems [2] and Eftekhari et.al used DE-sinc-collocation
method for solving a class of second-order nonlinear BVPs [5] also Saadatmandi et.al used numerical calculation of
fractional derivatives for the sinc functions via Legendre polynomials [21].

The paper is organized as follows: In section 2, we review some of the main properties of the sinc function that are
necessary for the formulation of the discrete system. In section 3, we explain the interpolation using non-classical sinc
functions. In section 4, the presented method is used to approximate the solution of problem (1.1) with each of the
boundary conditions (1.2)-(1.5). In section 5, the error analysis of the method is discussed. In section 6, numerical
examples are given to illustrate the efficiency of the presented method. The conclusion is presented in section 7.

2. Sinc function preliminaries

The sinc function on R is defined as follows

Sinc(t) =

{
sin(πt)
πt , t ̸= 0,
1, t = 0.

For h > 0, the translated sinc functions is defined as follows [16]

S(j, h)(t) = Sinc

(
t− jh

h

)
, j = 0,±1,±2, · · · . (2.1)

The sinc functions are cardinal for the interpolating points tk = kh, i.e,

S(j, h)(kh) = δjk =

{
1, j = k,
0, j ̸= k.

Let g be a function defined on the real line then for h ∈ R+ the series

C(g, h)(t) =

∞∑
j=−∞

g(jh)S(j, h)(t),

is called the Whittaker cardinal expansion of g whenever this series converges. Obviously, the cardinal function
interpolates g at the points {jh}∞j=−∞ and it is based on the infinite strip Ds in the complex plane

Ds = {z = u+ iv : |v| < d ≤ π/2}.
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Such an approximations can be constructed for infinite, semi-infinite and finite intervals [16]. To construct approxi-
mation on the interval (0, 1), we employ the conformal map

ψ(w) = ln

(
w

1− w

)
, (2.2)

which maps the eye-shaped region

DE =

{
w = x+ iy :

∣∣∣∣arg( w

1− w

)∣∣∣∣ < d ≤ π/2

}
,

onto Ds.
The sinc basis functions used in our numerical approach are given by the composition of the translated sinc functions
S(j, h) and the conformal map ψ as follows

Sj(w) = S(j, h)oψ(w) = Sinc

(
ψ(w)− jh

h

)
, w ∈ DE , (2.3)

where

w = ψ−1(z) =
ez

1 + ez
,

is an inverse mapping of z = ψ(w).
For the evenly spaced knots {kh}∞k=−∞ on the real line, the corresponding images tk ∈ (0, 1) which are real in DE are
as follows

tk = ψ−1(kh) =
ekh

1 + ekh
, k = 0,±1,±2, . . . (2.4)

3. Non-classical sinc function interpolation

Let g(t) be a given function on the real line, we define the approximation of g(t) with non-classical sinc as follows

g(t) ≃ ĝ(t) =
∞∑

j=−∞

W (t)

W (jh)
g(jh)sinc

(
t− jh

h

)
, (3.1)

where W (t) is a positive weight function. For the interpolating points tk = kh, we have

ĝ(kh) = g(kh), k = 0,±1,±2, · · · .

Definition 3.1. Let B(Ds) be the set of all analytical functions in Ds that satisfy∫ d

−d
|g(t+ iv)|dv = O (|t|a) , t→ ±∞, 0 ≤ a < 1,

and

N(g,Ds) = lim
v→d−

{∫ ∞

−∞
|g(t+ iv)|dt+

∫ ∞

−∞
|g(t− iv)|dt

}
<∞.

In fact, B(Ds) is the class of functions that the sinc approximation converges exponentially.

Theorem 3.2. If g ∈ B(Ds), h ∈ R and the weight function W is selected such that

W (u)

W (jh)
< c1 <∞, (3.2)

then

g(u)− ĝ(u) = Sh(u)I(u),

where

Sh(u) =
sin
(
πu
h

)
2πi

, i =
√
−1,
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I(u) =

∫ ∞

−∞

(
G(u, t− id−)W (u)

sin(π(t− id−)/h)W (t− id−)
− G(u, t+ id−)W (u)

sin(π(t+ id−)/h)W (t+ id−)

)
dt,

G(s, u± iv) =
g(u± iv)

(u− s± iv)
.

Moreover

||g − ĝ||∞ ≤ c1N(g,Ds)

2πd sinh
(
πd
h

) = O
(
e−

πd
h

)
. (3.3)

Proof. Let us define f(z) as follows

f(z) =
sin
(
πu
h

)
g(z)W (u)

(z − u) sinh
(
πz
h

)
W (z)

,

then the proof is similar with theorem 2.13 in [16]. �

Theorem 3.3. Let g ∈ B(Ds), condition (3.2) is satisfied and there are positive constants β1, β2, and c such that

|g(u)| ≤ c

{
e−β1|u|, u ∈ (−∞, 0),
e−β2|u|, u ∈ [0,∞).

Also let

N =

[∣∣∣∣β1β2M + 1

∣∣∣∣] , (3.4)

and

h =

(
πd

β1M

) 1
2

≤ 2πd

ln(2)
, (3.5)

then

||g − ĝM,N || ≤ k1c1M
1
2 e−

√
πdβ1M , (3.6)

where

ĝM,N (u) =
N∑

j=−M

g(jh)
W (u)

W (jh)
sinc

(
u− jh

h

)
. (3.7)

Proof. Using equations (3.1) and (3.7):

|g(u)− ĝM,N (u)| =

∣∣∣∣∣g(u)− ĝ(u) +
−M−1∑
j=−∞

g(jh)
W (u)

W (jh)
sinc

(
u− jh

h

)
+

∞∑
j=N+1

g(jh)
W (u)

W (jh)
sinc

(
u− jh

h

) ∣∣∣∣∣.
Using triangular inequality it leads to

|g(u)− ĝM,N (u)| ≤ |g(u)− ĝ(u)|+

∣∣∣∣∣∣
−M−1∑
j=−∞

g(jh)
W (u)

W (jh)
sinc

(
u− jh

h

)∣∣∣∣∣∣+
∣∣∣∣∣∣

∞∑
j=N+1

g(jh)
W (u)

W (jh)
sinc

(
u− jh

h

)∣∣∣∣∣∣ .
Now by some computation, we obtain∣∣∣∣∣∣

−M−1∑
j=−∞

g(jh)
W (u)

W (jh)
sinc

(
u− jh

h

)∣∣∣∣∣∣ ≤ c1

∞∑
j=M+1

|g(−jh)| ≤ c1c
∞∑

j=M+1

e−β1jh

= c1c

(
e−β1h(M+1)

1− e−β1h

)
= c1ce

−β1Mh

(
1

eβ1h − 1

)
≤ c1c

β1h
e−β1Mh, (3.8)



CMDE Vol. 11, No. 3, 2023, pp. 643-663 647

similarly,∣∣∣∣∣∣
∞∑

j=N+1

g(jh)
W (u)

W (jh)
sinc

(
u− jh

h

)∣∣∣∣∣∣ ≤ c1c

β2h
e−β2Nh. (3.9)

Using (3.3) and (3.8)-(3.9):

|g(u)− ĝM,N (u)| ≤ c1c

β1h
e−β1Mh +

c1c

β2h
e−β2Nh +

2c1N(g,Ds)

πd
e−

πd
h . (3.10)

Finally using (3.4) and (3.5), we obtain

|g(u)− ĝM,N (u)| ≤

(
c

β1
+

c

β2
+

2N(g,Ds)

πd

√
πd

β1

)√
β1
πd
c1M

1
2 e−

√
πdβ1M

≡ c1k1M
1
2 e−

√
πdβ1M .

�
Definition 3.4. Let DE be a simply connected domain in C with boundary points a and b. Let ψ be a conformal
map from DE onto Ds with ψ(a) = −∞ and ψ(b) = ∞. Also, we denote the inverse map of ψ by ϕ and we define

Γ = {w ∈ C : w = ϕ(u), u ∈ R},
and

wj = ϕ(jh), j = 0.± 1,±2, . . . .

Definition 3.5. Let B(DE) be the class of functions G which are analytic in DE , and∫
ϕ(L+u)

|G(w)dw| → 0, u→ ±∞,

where L = {iv : |v| < d} and

N(G,DE) ≡
∫
∂DE

|G(w)dw| <∞,

where ∂DE is the boundary of DE .

Theorem 3.6. Suppose G ∈ B(DE) and the weight function W is selected such that W (ξ)
W (wj)

< c1, then for all ξ ∈ Γ

ε(G)(ξ) ≡ G(ξ)

ψ′(ξ)
−

∞∑
j=−∞

G(wj)W (ξ)

ψ′(wj)W (wj)
sinc

(
ψ(ξ)− jh

h

)

=
sin
(
πψ(ξ)
h

)
2πi

lim
γ→∂DE

∫
γ

G(w)W (ξ)

(ψ(w)− ψ(ξ)) sin(πψ(w)/h)W (w)
dw,

moreover

||ε(G)||∞ ≤ c1N(G,DE)

2πd sinh
(
πd
h

) ≤ 2c1N(G,DE)

πd
e−

πd
h . (3.11)

Proof. Let us define the conformal rectangles ϕ(Rn), where

Rn =

{
z ∈ C : z = u+ iv, |v| < vn, −

(
n+

1

2

)
h < u <

(
n+

1

2

)
h

}
,

and vn = d− 1
n . Note that Rn ⊂ Ds. Using the change of variables z = ψ(w) and ψ(ξ) = u, we have

sin
(
πu
h

)
2πi

∫
∂ψ(Rn)

G(w)W (ξ)

(ψ(w)− ψ(ξ)) sin
(
πz
h

)
W (w)

dw =
sin
(
πu
h

)
2πi

∫
∂Rn

G(ϕ(z))ϕ′(z)W (ϕ(u))

(z − u) sin
(
πz
h

)
W (ϕ(z))

dz.
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Similar to theorem 1.13 and 2.13 in [16] and theorem 3.2

sin
(
πu
h

)
2πi

∫
∂Rn

G(ϕ(z))ϕ′(z)W (ϕ(u))

(z − u) sin
(
πz
h

)
W (ϕ(z))

dz = G(ϕ(u))ϕ′(u)−
N∑

j=−M

G(ϕ(jh))ϕ′(jh)
W (ϕ(u))

W (ϕ(jh))
sinc

(
u− jh

h

)

given that ψ(ξ) = u, ξ = ϕ(u) and ϕ′(u) = 1
ψ′(ξ) then

G(ϕ(u))ϕ′(u)−
N∑

j=−M

G(ϕ(jh))ϕ′(jh)
W (ϕ(u))

W (ϕ(jh))
sinc

(
u− jh

h

)
=
G(ξ)

ψ′(ξ)
−

N∑
j=−M

G(wj)

ψ′(wj)

W (ξ)

W (wj)
sinc

(
ψ(ξ)− jh

h

)
.

The proof of (3.11) is similar to the proof of (3.3) in theorem 3.2. �

Corollary 3.7. Let G ∈ B(DE) and there are positive constants β1, β2, and c such that∣∣∣∣G(t)ψ′(t)

∣∣∣∣ ≤ c

{
e−β1|ψ(t)|, t ∈ Γa,
e−β2|ψ(t)|, t ∈ Γb,

where

Γa = {t ∈ Γ : ψ(t) ∈ (−∞, 0)}, (3.12)

and

Γb = {t ∈ Γ : ψ(t) ∈ [0,∞)}. (3.13)

If N and h are given in (3.4) and (3.5), and the weight function W is selected such that W (t)
W (tj)

< c1, then for all t ∈ Γ,∣∣∣∣∣∣G(t)ψ′(t)
−

N∑
j=−M

G(tj)W (t)

ψ′(tj)W (tj)
sinc

(
ψ(t)− jh

h

)∣∣∣∣∣∣ ≤ k2c1M
1
2 e−

√
πdβ1M .

Proof. The proof is similar the theorem 3.3. �

Theorem 3.8. Let ψ′G ∈ B(DE) and the weight function is selected such that W (t)
W (tj)

< c1, then for all t ∈ Γ∣∣∣∣∣∣G(t)−
∞∑

j=−∞
G(tj)

W (t)

W (tj)
sinc

(
ψ(t)− jh

h

)∣∣∣∣∣∣ ≤ c1N(ψ′G,DE)

2πd sinh
(
πd
h

) . (3.14)

Also, let there are positive constants β1, β2, and c such that

|G(t)| ≤ c

{
e−β1|ψ(t)|, t ∈ Γa,
e−β2|ψ(t)|, t ∈ Γb,

where Γa and Γb are defined in (3.12) and (3.13). If N and h are given as (3.4) and (3.5), then for all t ∈ Γ,∣∣∣∣∣∣G(t)−
N∑

j=−M

G(tj)
W (t)

W (tj)
sinc

(
ψ(t)− jh

h

)∣∣∣∣∣∣ ≤ c1k3M
1/2e−

√
πdβ1M . (3.15)
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Proof. The relation (3.14) can be obtained using (3.11) in theorem 3.6 for ψ′G .
To prove (3.15), using triangular inequality∣∣∣∣∣∣G(t)−

N∑
j=−M

G(tj)
W (t)

W (tj)
sinc

(
ψ(t)− jh

h

)∣∣∣∣∣∣ ≤
∣∣∣∣∣∣G(t)−

∞∑
j=−∞

G(tj)
W (t)

W (tj)
sinc

(
ψ(t)− jh

h

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
−M−1∑
j=−∞

G(tj)
W (t)

W (tj)
sinc

(
ψ(t)− jh

h

)∣∣∣∣∣∣
+

∣∣∣∣∣∣
∞∑

j=N+1

G(tj)
W (t)

W (tj)
sinc

(
ψ(t)− jh

h

)∣∣∣∣∣∣ ,
and some computations, we have∣∣∣∣∣∣

−M−1∑
j=−∞

G(tj)
W (t)

W (tj)
sinc

(
ψ(t)− jh

h

)∣∣∣∣∣∣ ≤ c1

−M−1∑
j=−∞

|G(tj)| (3.16)

= c1

−M−1∑
j=−∞

∣∣G (ψ−1(jh)
)∣∣ = c1

∞∑
j=M+1

∣∣G (ψ−1(−jh)
)∣∣

≤ c1c
∞∑

j=M+1

e−β1jh

≤ c1c

β1h
e−β1Mh.

Similarly,∣∣∣∣∣∣
∞∑

j=N+1

G(tj)
W (t)

W (tj)
sinc

(
ψ(t)− jh

h

)∣∣∣∣∣∣ ≤ c1c

β2h
e−β2Nh. (3.17)

Using (3.14), (3.16), and (3.17)∣∣∣∣∣∣G(t)−
N∑

j=−M

G(tj)
W (t)

W (tj)
sinc

(
ψ(t)− jh

h

)∣∣∣∣∣∣ ≤ c1c

β1h
e−β1Mh +

c1c

β2h
e−β2Nh +

2c1N(ψ′G,DE)

πd
e−

πd
h ,

and finally from (3.4) and (3.5), we obtain∣∣∣∣∣∣G(t)−
N∑

j=−M
G(tj)

W (t)

W (tj)
sinc

(
ψ(t)− jh

h

)∣∣∣∣∣∣ ≤
[
c

β1
+

c

β2
+

2N(ψ′G,DE)

πd

√
πd

β1

]√
β1
πd
c1M

1/2e−
√
πdβ1M

≡ c1k3M
1/2e−

√
πdβ1M .

�

Theorem 3.9. Let ψ′2G ∈ B(DE) and the weight function is selected such that W (t)
W (tj)

< c1, then for all t ∈ Γ∣∣∣∣∣∣G(t)−
∞∑

j=−∞
ϕ′(tj)G(tj)

W (t)

W (tj)

sinc
(
ψ(t)−jh

h

)
ψ′(t)

∣∣∣∣∣∣ ≤ c1N(ψ′2G,DE)

2πd sinh
(
πd
h

) . (3.18)
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Also, let there are positive constants β1, β2, and c such that

|(ψ′G)(t)| ≤ c

{
e−β1|ψ(t)|, t ∈ Γa,
e−β2|ψ(t)|, t ∈ Γb,

where Γa and Γb are defined in (3.12) and (3.13). If N and h are given as (3.4) and (3.5), then for all t ∈ Γ,∣∣∣∣∣∣G(t)−
N∑

j=−M

ϕ′(tj)G(tj)
W (t)

W (tj)

sinc
(
ψ(t)−jh

h

)
ψ′(t)

∣∣∣∣∣∣ ≤ c1k4M
1/2e−

√
πdβ1M . (3.19)

Proof. Relation (3.18) can be proved using (3.11) in theorem 3.6 for ψ′2G .
To prove (3.19), using triangular inequality∣∣∣∣∣∣G(t)−

N∑
j=−M

G(tj)ψ
′(tj)

W (t)

W (tj)

sinc
(
ψ(t)−jh

h

)
ψ′(t)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣G(t)−

∞∑
j=−∞

G(tj)ψ
′(tj)

W (t)

W (tj)

sinc
(
ψ(t)−jh

h

)
ψ′(t)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
−M−1∑
j=−∞

G(tj)ψ
′(tj)

W (t)

W (tj)

sinc
(
ψ(t)−jh

h

)
ψ′(t)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∞∑

j=N+1

G(tj)ψ
′(tj)

W (t)

W (tj)

sinc
(
ψ(t)−jh

h

)
ψ′(t)

∣∣∣∣∣∣ ,
and some computations∣∣∣∣∣∣

−M−1∑
j=−∞

G(tj)ψ
′(tj)

W (t)

W (tj)

sinc
(
ψ(t)−jh

h

)
ψ′(t)

∣∣∣∣∣∣ ≤ c1
4

−M−1∑
j=−∞

|(ψ′G)(tj)| (3.20)

=
c1
4

−M−1∑
j=−∞

∣∣(ψ′G)
(
ψ−1(jh)

)∣∣ = c1
4

∞∑
j=M+1

∣∣(ψ′G)
(
ψ−1(−jh)

)∣∣
≤ c1c

4

∞∑
j=M+1

e−β1jh

≤ c1c

4β1h
e−β2Mh,

similarly∣∣∣∣∣∣
∞∑

j=N+1

G(tj)ψ
′(tj)

W (t)

W (tj)

sinc
(
ψ(t)−jh

h

)
ψ′(t)

∣∣∣∣∣∣ ≤ c1c

4β2h
e−β2Nh, (3.21)

and using (3.18), (3.20), and (3.21), we have∣∣∣∣∣∣G(t)−
N∑

j=−M
G(tj)ψ

′(tj)
W (t)

W (tj)

sinc
(
ψ(t)−jh

h

)
ψ′(t)

∣∣∣∣∣∣ ≤ c1c

4β1h
e−β1Mh +

c1c

4β2h
e−β2Nh +

2c1N(ψ′2G,DE)

πd
e−

πd
h .

Finally using (3.4) and (3.5):∣∣∣∣∣∣G(t)−
N∑

j=−M

G(tj)ψ
′(tj)

W (t)

W (tj)

sinc
(
ψ(t)−jh

h

)
ψ′(t)

∣∣∣∣∣∣ ≤
[
c

4β1
+

c

4β2
+

2N(ψ′2G,DE)

πd

√
πd

β1

]√
β1
πd
c1M

1/2e−
√
πdβ1M

≡ c1k4M
1/2e−

√
πdβ1M .
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�

Lemma 3.10. Let ψ be a one-to-one conformal mapping of the simply connected domain DE onto Ds.Then we have
[16, 27]

δ
(0)
j,k =

(
S(j, h)oψ(t)

)∣∣∣
t=tk

=

{
1, j = k,
0, j ̸= k,

(3.22)

δ
(1)
j,k = h

d

dϕ

(
S(j, h)oψ(t)

)∣∣∣
t=tk

=

{
0, j = k,

(−1)k−j

k−j , j ̸= k,
(3.23)

δ
(2)
j,k = h2

d2

dϕ2

(
S(j, h)oψ(t)

)∣∣∣
t=tk

=

{
−π2

3 , j = k,
−2(−1)k−j

(k−j)2 , j ̸= k.
(3.24)

δ
(3)
j,k = h3

d3

dϕ3

(
S(j, h)oψ(t)

)∣∣∣
t=tk

=

{
0, j = k,

(−1)k−j

(k−j)3
[
6− π2(k − j)2

]
, j ̸= k.

(3.25)

4. The non-classical sinc-collocation method

Consider the equation (1.1) connected to one of the boundary conditions (1.2)-(1.5). The translated sinc functions
Sk(t) are not differentiable at zero and one, so we define the new functions{

Sk(t)

ψ′(t)

}n
k=−n

, (4.1)

which are called the modified sinc basis functions. The new basis functions are satisfied in the relations

lim
t−→0

Sj(t)

ψ′(t)
= lim
t−→1

Sj(t)

ψ′(t)
= 0, (4.2)

lim
t−→0

(
Sj(t)

ψ′(t)

)′

= lim
t−→1

(
Sj(t)

ψ′(t)

)′

= 0. (4.3)

So, they are well defined and differentiable at 0 and 1 now. The solution of (1.1) along with each of the boundary
conditions of (1.2)-(1.5) can be approximated by

x(t) ≃ xM,N (t) = UM,N (t) + v(t), (4.4)

where

UM,N (t) =

N∑
j=−M

cj
W (t)

W (tj)

Sj(t)

ψ′(t)
, (4.5)

since each of the boundary conditions of (1.2)-(1.5) are nonhomogeneous, in proportion to each of the boundary
conditions (1.2)-(1.5), we have added polynomials v(t) to the approximation solution, which are as follows

(i) v(t) = (−2γ + β + 2α)t3 + (3γ − 2β − 3α)t2 + βt+ α+A(t3 − t2), (4.6)

(ii) v(t) = (γ + β + 2α)t3 − (γ + 2β + 3α)t2 + βt+ α+A(3t2 − 2t3), (4.7)

(iii) v(t) = (γ − 2β + α)t3 − (−γ + 3β − 2α)t2 + αt+A(2t3 − 3t2 + 1), (4.8)

(iv) v(t) = (γ − 2β + 2α)t3 + (−γ + 3β − 3α)t2 + α+A(t− 2t2 + t3). (4.9)
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Now the approximate solution xM,N (t), in each of the boundary conditions (1.2)-(1.5) holds as:

(i) xM,N (0) = α, x′M,N (0) = β, xM,N (1) = γ, (4.10)

(ii) xM,N (0) = α, x′M,N (0) = β, x′M,N (1) = γ, (4.11)

(iii) x′M,N (0) = α, xM,N (1) = β, x′M,N (1) = γ, (4.12)

(iv) xM,N (0) = α, xM,N (1) = β, x′M,N (1) = γ. (4.13)

Substituting xM,N from (4.4) into (1.1), multiplying both sides by h3

ψ′2 and discretizing the result at the sinc grid

points tk, k = −M − 1, · · · , N , we have

h3
N∑

j=−M

(
ερ3,j(tk) +

p1(tk)

ψ′(tk)
ρ2,j(tk) +

p2(tk)

ψ′(tk)
2 ρ1,j(tk)

)
cj +

h3

ψ′(tk)
2 (εv′′′(tk) + p1(tk)v

′′(tk) + p2(tk)v
′(tk))

(4.14)

=
h3

ψ′(tk)
2 g

(
tk,

ck
ψ′(tk)

+ v(tk)

)
, k = −M − 1, · · · , N,

where

ρm,j(t) =
1

(ψ′(t))m−1

dm

dtm

(
W (t)Sj(t)

W (tj)ψ′(t)

)
, (4.15)

ρ0,j(t) =
W (t)

W (tj)
Sj(t). (4.16)

Simplifying (4.14) we obtain the following system of nonlinear equations with the unknowns cj , j = −M − 1, · · · , N,
N∑

j=−M

[
ε

(
W (tk)

W (tj)

)
δ
(3)
jk + h

(
W

W (tj)

(
p1
ψ′

)
+

W ′

W (tj)

(
3ε

ψ′

))
(tk)δ

(2)
jk

+ h2

(
W

W (tj)

(
2ε

(
1

ψ′

)(
1

ψ′

)′′

+ ε

(
1

ψ′

)2(
1

ψ′

)′

+

(
1

ψ′

)(
1

ψ′

)′

p1 +

(
1

ψ′

)2

p2

)

+
W ′

W (tj)

(
3ε

(
1

ψ′

)(
1

ψ′

)′

+ 2

(
1

ψ′

)2

p1

)
+

W ′′

W (tj)

(
3ε

(
1

ψ′

)2
))

(tk)δ
(1)
jk

+ h3

(
W

W (tj)

(
ε

(
1

ψ′

)′′′(
1

ψ′

)2

+

(
1

ψ′

)2 (
1

ψ′

)′′

p1 +

(
1

ψ′

)2(
1

ψ′

)′

p2

)

+
W ′

W (tj)

(
3ε

(
1

ψ′

)2 (
1

ψ′

)′′

+ 2

(
1

ψ′

)2 (
1

ψ′

)′

p1 +

(
1

ψ′

)3

p2

)

+
W ′′

W (tj)

(
3ε

(
1

ψ′

)2 (
1

ψ′

)′

+

(
1

ψ′

)3

p1

)
+ ε

W ′′′

W (tj)

(
1

ψ′

)3
)
(tk)δ

(0)
jk

]
cj

+
h3

ψ′(tk)
2

(
εv′′′(tk) + p1(tk)v

′′(tk) + p2(tk)v
′(tk)

)

=
h3

ψ′(tk)
2 g

(
tk,

ck
ψ′(tk)

+ v(tk)

)
, k = −M − 1, · · · , N, (4.17)
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where we used c−M−1 = 0. Then by solving the system of equations (4.17) using the Newtons method, the unknowns
cj , A, and xM,N (t) are obtained.

5. Error analysis

Let the differential equation (1.1) subject to one of the boundary conditions of (1.2)-(1.5) has a unique solution
x ∈ B(DE), and

p1
ψ′ and p2

ψ′2 belong to B(DE).

Since δnjk = (−1)nδnkj , n = 0, 1, 2, 3, the system of equations (4.17) for unknown coefficients cj , j = −M − 1, · · · , N can

be written in matrix form. We use the following notations: let u be defined on Γ, thenD(u) = diag(u(t−M−1), . . . , u(tN ));

let I(n), n = 0, 1, 2, 3 be the matrix I(n) = [δ
(n)
kj ], where δ

(n)
kj is (k, j)th element. Clearly, it follows from (4.6)-(4.9) that

(i) v(t) = (−2γ + β + 2α)t3 + (3γ − 2β − 3α)t2 + βt+ α+ x′(1)(t3 − t2), (5.1)

(ii) v(t) = (γ + β + 2α)t3 − (γ + 2β + 3α)t2 + βt+ α+ x(1)(3t2 − 2t3), (5.2)

(iii) v(t) = (γ − 2β + α)t3 − (−γ + 3β − 2α)t2 + αt+ x(0)(2t3 − 3t2 + 1), (5.3)

(iv) v(t) = (γ − 2β + 2α)t3 + (−γ + 3β − 3α)t2 + α+ x′(0)(t− 2t2 + t3), (5.4)

using the above notations, the system of equations (4.17) can be written as follows

Ac+K(c) = q, (5.5)

where the matrix A and vectors c, K(c), and q are given by

c = [0, c−M , · · · , cN ],

A =

[
− εD(W )I(3) + hD

[
W

(
p1
ψ′

)
+W ′

(
3ε

ψ′

)]
I(2)

− h2D

(
W

(
2ε

(
1

ψ′

)(
1

ψ′

)′′

+ ε

(
1

ψ′

)2(
1

ψ′

)′

+

(
1

ψ′

)(
1

ψ′

)′

p1 +

(
1

ψ′

)2

p2

)

+W ′

(
3ε

(
1

ψ′

)(
1

ψ′

)′

+ 2

(
1

ψ′

)2

p1

)
+W ′′

(
3ε

(
1

ψ′

)2
))

I(1)

+ h3D

(
W

(
ε

(
1

ψ′

)′′′(
1

ψ′

)2

+

(
1

ψ′

)2(
1

ψ′

)′′

p1 +

(
1

ψ′

)2(
1

ψ′

)′

p2

)

+W ′

(
3ε

(
1

ψ′

)2(
1

ψ′

)′′

+ 2

(
1

ψ′

)2(
1

ψ′

)′

p1 +

(
1

ψ′

)3

p2

)

+W ′′

(
3ε

(
1

ψ′

)2(
1

ψ′

)′

+

(
1

ψ′

)3

p1

)
+W ′′′ε

(
1

ψ′

)3
)]

f,

f =

[
1

W (t−M−1)
, . . . ,

1

W (tN )

]T
,

q = −h3D
(

1

ψ′2

)
v,

v =
[
εv′′′(t−M−1) + p1v

′′(t−M−1) + p2v
′(t−M−1), . . . , εv

′′′(tN ) + p1v
′′(tN ) + p2v

′(tN )
]T
,
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K(c) = −h3D
(

1

ψ′2

)
g,

g =

[
g(t−M−1, v(t−M−1)), g

(
t−M ,

c−M
ψ′(t−M )

+ v(t−M−1)

)
, . . . , g

(
tN−1,

cN−1

ψ′(tN−1)
+ v(tN−1)

)
, g(tN , v(tN ))

]
.

To obtain a bound on the error |x(t)− xM,N (t)|, we first need to find a bound on
∣∣∣∣Ax̂∗ +K(x̂∗)− q

∣∣∣∣ where x̂∗ is a
vector defined by

x̂∗ =
[
x̂∗−M−1, . . . , x̂∗N

]T
,

with

x̂∗n = x∗nψ
′(tn) = (x− v)(tn)ψ

′(tn).

Also, we need to obtain a bound on
∣∣∣∣A−1

∣∣∣∣.
Lemma 5.1. Let ψ′2x∗ ∈ B(DE) and there are positive constants β1, β2, and c such that

|(ψ′x∗)(t)| = |(ψ′(x− v)) (t)| ≤ c

{
e−β1|ψ(t)|, t ∈ Γa,
e−β2|ψ(t)|, t ∈ Γb,

(5.6)

where Γa and Γb are defined in (3.12) and (3.13). Let g(t, x) satisfies the Lipschitz condition: |g(t, x) − g(t, x∗)| ≤
l|x − x∗| and N and h are satisfied in (3.4) and (3.5). If the weight function W is selected such that W (t)

W (tj)
< c1,

W ′(t)
W (tj)

< c1,
W ′′(t)
W (tj)

< c1 and W ′′′(t)
W (tj)

< c1, then we have∣∣∣∣Ax̂∗ +K(x̂∗)− q
∣∣∣∣ ≤ c1k5M

1
2 e−

√
πdβ1M , (5.7)

where A, x̂∗, K, and q are defined befor.

Proof. Let us define the kernels Tn, n = 0, 1, 2, 3 associated with the modified non-classical sinc function by

Tn(t, w) =
1

2πi(ψ′)n−1

∂n

∂tn

 sin
(
πψ(t)
h

)
W (t)

ψ′(t)(ψ(w)− ψ(t))W (w)

 . (5.8)

The series expansion for x̂∗(t) = x∗(t)ψ′(t) can be written as

x∗(t)−
∞∑

j=−∞
x̂∗(tj)

ρ0,j(t)

ψ′(t)
=

∫
∂D

T0(t, w)

ψ′(t) sin
(
πψ(w)
h

)ψ′(w)x̂∗(w)dw, (5.9)

where ρ0,j(t) is defined by (4.15). So it results

dn

dtn
x∗(t)−

∞∑
j=−∞

(ψ′(t))n−1ρn,j(t)x̂∗(tj) =

∫
∂D

(ψ′(t))n−1Tn(t, w)

sin
(
πψ(w)
h

) ψ′(w)x̂∗(w)dw, n = 0, 1, 2, 3. (5.10)

Let rk denote the k-th component of the residual vector r = Ax̂∗ + K(x̂∗) − q. Then, replacing cj with x̂∗(tj) in
(4.14) we obtain

rk = {Ax̂∗ +K(x̂∗)− q}k (5.11)

= h3
N∑

j=−M

(
ερ3,j(tk) +

p1(tk)

ψ′(tk)
ρ2,j(tk) +

p2(tk)

ψ′(tk)
2 ρ1,j(tk)

)
x̂∗(tj)−

h3

ψ′(tk)
2 g

(
tk,

x̂∗(tk)

ψ′(tk)
+ v(tk)

)

+
h3

ψ′(tk)
2 (εv′′′(tk) + p1(tk)v

′′(tk) + p2(tk)v
′(tk)) .
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Since h3

ψ′2 (Lx− g) = 0, by subtracting from (5.11) we have

rk =

{
Ax̂∗ +K(x̂∗)− q− h3

ψ′(t)
2 (Lx− g)

}
k

= h3
N∑

j=−M

(
ερ3,j(tk) +

p1(tk)

ψ′(tk)
ρ2,j(tk) +

p2(tk)

ψ′(tk)
2 ρ1,j(tk)

)
x̂∗(tj)

− h3

ψ′(tk)
2 g

(
tk,

x̂∗(tk)

ψ′(tk)
+ v(tk)

)
+

h3

ψ′(tk)
2

(
εv′′′(tk) + p1(tk)v

′′(tk)

+ p2(tk)v
′(tk)

)
− h3

ψ′(tk)
2 (εx′′′(tk) + p1(tk)x

′′(tk) + p2(tk)x
′(tk))

+
h3

ψ′(tk)
2 g (tk, x(tk))

= r
(1)
k + r

(2)
k + r

(3)
k ,

where

r
(1)
k = − h3

ψ′(tk)
2

(
εx′′′(tk) + p1(tk)x

′′(tk) + p2(tk)x
′(tk)− εv′′′(tk)− p1(tk)v

′′(tk)− p2(tk)v
′(tk)

)
+ h3

∞∑
j=−∞

(
ερ3,j(tk) +

p1(tk)

ψ′(tk)
ρ2,j(tk) +

p2(tk)

ψ′(tk)
2 ρ1,j(tk)

)
x̂∗(tj)

= − h3

ψ′(tk)
2

(
εx∗

′′′
(tk) + p1(tk)x

∗′′
(tk) + p2(tk)x

∗′′
(tk)

)
(5.12)

+ h3
∞∑

j=−∞

(
ερ3,j(tk) +

p1(tk)

ψ′(tk)
ρ2,j(tk) +

p2(tk)

ψ′(tk)2
ρ1,j(tk)

)
x̂∗(tj)

= −h3
∫
∂DE

(
εT3(tk, w) +

p1(tk)

ψ′(tk)
T2(tk, w) +

p2(tk)

ψ′(tk)
2T1(tk, w)

)
ψ′(w)x̂∗(w)

sin
(
πψ(w)
h

)dw,
r
(2)
k = −h3

−M−1∑
j=−∞

(
ερ3,j(tk) +

p1(tk)

ψ′(tk)
ρ2,j(tk) +

p2(tk)

ψ′(tk)
2 ρ1,j(tk)

)
x̂∗(tj)

−h3
∞∑
j=N

(
ερ3,j(tk) +

p1(tk)

ψ′(tk)
ρ2,j(tk) +

p2(tk)

ψ′(tk)2
ρ1,j(tk)

)
x̂∗(tj),

r
(3)
k =

h3

ψ′(tk)
2

(
g(tk, x(tk))− g

(
tk,

x̂∗(tk)

ψ′(tk)
+ v(tk)

))
.

From (5.8) we can obtain

T0(tk, w) = 0, T1(tk, w) =
(−1)kW (tk)

2ih(ψ(z)− kh)W (w)
,

T2(tk, w) =
(−1)k

2ih(ψ(w)− kh)2

(
2 + (ψ(w)− kh)

(
1

ψ′

)′

(tk)

)
W (tk)

W (w)
+

(−1)kW ′(tk)

2ih(ψ(w)− kh)W (w)

(
2

ψ′

)
(tk),
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T3(tk, w) =
(−1)k

2ih(ψ(w)− kh)3

(
6 + (ψ(w)− kh)2

(
−
(π
h

)2
+ 2

(
1

ψ′

)(
1

ψ′

)′′

(tk)

)

− (ψ(w)− kh)2

((
1

ψ′

)′
)2

(tk)

)
W (tk)

W (w)
+

(−1)k

2ih(ψ(w)− kh)2

(
6

ψ′

+
3

ψ′

(
1

ψ′

)′

(ψ(w)− kh)

)
W ′(tk)

W (w)
+

3(−1)k

2ih(ψ(w)− kh)

(
1

ψ′

)2
W ′′(tk)

W (w)
.

Also, we have the following bounds on 1
ψ′ and its derivatives

∣∣∣∣ 1

ψ′(t)

∣∣∣∣ ≤ 1

4
,

∣∣∣∣∣
(

1

ψ′(t)

)′
∣∣∣∣∣ ≤ 1,

∣∣∣∣∣
(

1

ψ′(t)

)′′
∣∣∣∣∣ ≤ 2,

∣∣∣∣∣
(

1

ψ′

)(
1

ψ′

)′′
∣∣∣∣∣ ≤ 1

2
. (5.13)

Now, since |Iψ(w)| = d on ∂DE , setting u(w) = Rψ(w) and using relation (5.13) and lemmas assumptions on W we
have

|T1(tk, w)| ≤
c1c

′
1h

−1(
(u(w)− kh)2 + d2

) 1
2

, |T2(tk, w)| ≤
c1c

′
2h

−1(
(u(w)− kh)2 + d2

) 1
2

, |T3(tk, w)| ≤
c1c

′
3h

−1(
(u(w)− kh)2 + d2

) 1
2

.

Then, we obtain

h3
∣∣∣∣εT3(tk, w) + p1(tk)

ψ′(tk)
T2(tk, w) +

p2(tk)

ψ′(tk)2
T1(tk, w)

∣∣∣∣ ≤ c1c2h(
(u(w)− kh)2 + d2

) 1
2

, (5.14)

where c2 is a constant depending on (5.13), h, d, ε and on the bounds for the coefficients of the differential equation.
Therefore, we have

∣∣∣∣Ax̂∗ +K(x̂∗)− q
∣∣∣∣ = ( N∑

k=−M

|rk|2
) 1

2

≤

(
N∑

k=−M

|r(1)k |2
) 1

2

+

(
N∑

k=−M

|r(2)k |2
) 1

2

+

(
N∑

k=−M

|r(3)k |2
) 1

2

. (5.15)

The first term at right-hand side satisfies

N∑
k=−M

|r(1)k |2 ≤
N∑

k=−M

∣∣∣∣∣∣
∫
∂DE

c1c2h(
(u(w)− kh)2 + d2

) 1
2

|ψ′(w)x̂(w)∣∣∣sin(πψ(z)h

)∣∣∣ |dw|
∣∣∣∣∣∣
2

≤ c3c
2
1(

sinh
(
πd
h

))2 , (5.16)



CMDE Vol. 11, No. 3, 2023, pp. 643-663 657

which is obtained by using (5.14), the bound sinh
(
πd
h

)
≤ sin

(
πψ(w)
h

)
on ∂DE and the integrability of |x̂∗ψ′|. For the

second term, using (5.13), (5.6), and the assumptions on the coefficients of the differential equation, we obtain

N∑
k=−M

∣∣∣r(2)k ∣∣∣2 =
N∑

k=−M

∣∣∣∣∣ ∑
j<−M,j>N

[
ε

(
W (tk)

W (tj)

)
δ
(3)
jk

+ h

(
W

W (tj)

(
p1
ψ′

)
+

W ′

W (tj)

(
3ε

ψ′

))
(tk)δ

(2)
jk

+ h2

(
W

W (tj)

(
2ε

(
1

ψ′

)(
1

ψ′

)′′

+ ε

(
1

ψ′

)2(
1

ψ′

)′

+

(
1

ψ′

)(
1

ψ′

)′

p1 +

(
1

ψ′

)2

p2

)

+
W ′

W (tj)

(
3ε

(
1

ψ′

)(
1

ψ′

)′

+ 2

(
1

ψ′

)2

p1

)
+

W ′′

W (tj)

(
3ε

(
1

ψ′

)2
))

(tk)δ
(1)
jk

+ h3

(
W

W (tj)

(
ε

(
1

ψ′

)′′′(
1

ψ′

)2

+

(
1

ψ′

)2(
1

ψ′

)′′

p1 +

(
1

ψ′

)2(
1

ψ′

)′

p2

)

+
W ′

W (tj)

(
3ε

(
1

ψ′

)2(
1

ψ′

)′′

+ 2

(
1

ψ′

)2(
1

ψ′

)′

p1 +

(
1

ψ′

)3

p2

)

+
W ′′

W (tj)

(
3ε

(
1

ψ′

)2(
1

ψ′

)′

+

(
1

ψ′

)3

p1

)
+

W ′′′

W (tj)
ε

(
1

ψ′

)3
)
(tk)δ

(0)
jk

]
x̂∗(tj)

∣∣∣∣∣
2

≤ c21c
′
3

N∑
k=−M

 ∑
j<−M,j>N

γ2kj
∑

j<−M,j>N

|x̂∗(tj)|2
 ≤ c21c4

h2
e−2β1Mh, (5.17)

where γkj is defined by

γkj = max
{
|δ(0)kj |, |δ

(1)
kj |, |δ

(2)
kj |, |δ

(3)
kj |
}
.

Since the function g(t, x) satisfies the Lipschitz condition, we have∣∣∣∣g(tk, x(tk))− g

(
tk,

x̂∗(tk)

ψ′(tk)
+ v(tk)

)∣∣∣∣ ≤ l

∣∣∣∣x(tk)− x̂∗(tk)

ψ′(tk)
− v(tk)

∣∣∣∣
= l

∣∣∣∣∣x(tk)− ψ′(tk)
(
x(tk)− v(tk)

)
ψ′(tk)

− v(tk)

∣∣∣∣∣ = 0,

N∑
k=−M

∣∣∣r(3)k ∣∣∣2 = 0. (5.18)

Now using (5.15), (5.16), (5.17), and (5.18), we obtain the result∣∣∣∣Ax̂∗ +K(x̂∗)− q
∣∣∣∣ ≤ c1k5M

1
2 e−

√
πdβ1M .

�

Lemma 5.2. Let the assumptions in lemma 5.1 be satisfied. If the matrix A is nonsingular, then∣∣∣∣A−1
∣∣∣∣ ≤ 9M3

π3

(
1 + c5M

−1
)
, (5.19)

holds for a constant c5 and sufficiently large M .

Proof. The relation (5.19) can be proved using the results in [3] and [18]. �
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Theorem 5.3. Let x and xM,N be the exact and approximate solutions of equation (1.1) respectively. Also, let
c = [0, c−M , · · · , cN ] be the solution of the system of equation (5.5). If the assumptions in lemma 5.1 and 5.2 are
satisfied, then for t ∈ Γ,∣∣x(t)− xM,N (t)

∣∣ ≤ c1k6M
7
2 e−

√
πdβ1M .

Proof. Let the function ηM,N be defined by

ηM,N (t) =
1

ψ′(t)

N∑
j=−M

W (t)

W (tj)
x∗(tj)ψ

′(tj)Sj(t) =
1

ψ′(t)

N∑
j=−M

W (t)

W (tj)
x̂∗(tj)Sj(t).

From (4.4)

x(t)− xM,N (t) = x(t)− xM,N (t) + ηM,N (t)− ηM,N (t)

= x(t)− UM,N (t)− v(t) + ηM,N (t)− ηM,N (t),

then using x∗(t) = x(t)− v(t), we obtain

x(t)− xM,N (t) = (x∗(t)− ηM,N (t)) + (ηM,N (t)− UM,N (t)) .

Now taking the absolute from both sides and using the triangular inequality we have∣∣x(t)− xM,N (t)
∣∣ ≤ ∣∣x∗(t)− ηM,N (t)

∣∣+ ∣∣ηM,N (t)− UM,N (t)
∣∣. (5.20)

By theorem 3.9 and proceeding as in [3]

sup
t∈Γ

∣∣x∗(t)− ηM,N (t)
∣∣ ≤ c1c6M

1
2 e−

√
πdβ1M . (5.21)

We find a bound on the second term of the right-hand side of (5.20) as follows

∣∣ηM,N (t)− UM,N (t)
∣∣ =

∣∣∣∣∣∣ 1

ψ′(t)

N∑
j=−M

W (t)

W (tj)

(
x̂∗(tj)− cj

)
Sj(t)

∣∣∣∣∣∣ ,
then using the cauchy schwartz inequality

∣∣ηM,N (t)− UM,N (t)
∣∣ ≤

 N∑
j=−M

∣∣x̂∗(tj)− cj
∣∣2 1

2
 N∑
j=−M

∣∣∣∣ W (t)

W (tj)

Sj(t)

ψ′(t)

∣∣∣∣2
 1

2

≤ c1
4

 N∑
j=−M

∣∣x̂∗(tj)− cj
∣∣2 1

2

=
c1
4

∣∣∣∣x̂∗ − c
∣∣∣∣ ,

where the last relation obtained by the boundedness of 1
ψ′(t) and W (t)

W (tj)
< c1. Finally, from (5.7) and (5.19), we have∣∣∣∣x̂∗ − c

∣∣∣∣ = ∣∣∣∣A−1(Ax̂∗ +K(x̂∗)− q)
∣∣∣∣ (5.22)

≤
∣∣∣∣A−1

∣∣∣∣ ∣∣∣∣Ax̂∗ +K(x̂∗)− q
∣∣∣∣

≤ c1c7M
5
2 e−

√
πdβ1M .

Combining (5.21) with (5.22), we obtain the result∣∣x(t)− xM,N (t)
∣∣ ≤ c1k6M

7
2 e−

√
πdβ1M .

�
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6. Numerical examples

In this section, four problems will be solved using the non-classical sinc-collocation method. In all examples we

choose β1 = β2 = 0.5, d = π
2 , h =

√
πd
β1M

and N =
[∣∣∣β1

β2
M + 1

∣∣∣].
The maximum absolute error of the presented method, is defined by

E = max
0≤i≤100

∣∣xM,N (ti)− x(ti)
∣∣,

where x(t) and xM,N (t) are the exact and approximate solutions successively and ti are equally spaced knots in the
interval.
As it turned out, for any positive weight function, provided that W (t)

W (tj)
≤ c1, the convergence rate of the non-classical

sinc-collocation method is exponential. But we tested different positive weights and found that the results were better
for some weights than others. For this reason, we used the following weights to solve the examples:

W =W1 = 1, W =W2 = 0.1 + sin(πt), W =W3 = 1 + t− t2.

All numerical results are obtained with Maple 12.

Example 6.1. Consider the following singularly perturbed boundary value problem [12, 23, 29]

−εx′′′(t) = −x(t) + 81ε2 cos(3t) + 3ε sin(3t),

x(0) = 0, x′(0) = 9ε, x(1) = 3ε sin(3),

with the exact solution x(t) = 3ε sin(3t).
In the Tables 1 and 2, the maximum absolute errors of the proposed method with different weights are given, and they
are compared with the results of the ESM[12] method. Also, the Figures 1-3 show the maximum absolute error of
the proposed method for different weights. These tables and figures show that the proposed method is more accurate
compared to the classic sinc method by selecting some proper weight functions.

Table 1. The maximum absolute errors for example 6.1 with ε = 1/16.

E Other method
M W1 W2 W3 N ESM [12]

20 2.5(−6) 9.2(−8) 5.7(−7) 20 6.1(−5)
40 1.5(−8) 2.4(−10) 3.4(−9) 40 1.5(−6)
60 3.0(−10) 5.4(−12) 6.4(−11) − −
80 1.0(−11) 7.6(−14) 2.0(−12) − −

Table 2. The maximum absolute errors for example 6.1 with ε = 1/64.

E Other method
M W1 W2 W3 N ESM [12]

20 6.0(−7) 1.9(−8) 1.3(−7) 20 1.0(−6)
40 3.6(−9) 3.6(−11) 8.3(−10) 40 2.5(−6)
60 7.4(−11) 1.0(−12) 1.6(−11) − −
70 1.3(−11) 1.7(−13) 2.6(−12) − −

Example 6.2. Consider the following boundary value problem [19]

x′′′(t)− t2
(
x′′(t)− x′(t)

)
+ x(t)2 = g(t),

x(0) = 0, x′(0) = −1, x′(1) = sin(1),
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Figure 1. The maximum absolute error with ε = 10−1 for example 6.1.
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Figure 2. The maximum absolute error with ε = 10−2 for example 6.1.

with the exact solution x(t) = (t− 1) sin(t).
In the Table 3, the maximum absolute errors of the proposed method with different weights are given. This table
shows that the proposed method is more accurate compared to the classic sinc method by selecting some proper weight
functions. Also, this table shows the results of the method presented in [19] that our method is much more accurate
compared to this method.

Example 6.3. Consider the following singular boundary value problem

x′′′(t)− 2

t
x′′(t) = x(t)3 − 6et + 6tet + 7t2et + t3et − t9e3t,

x(0) = 0, x′(0) = 0, x′(1) = 4e,
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Figure 3. The maximum absolute error with ε = 10−3 for example 6.1.

Table 3. The maximum absolute errors for example 6.2.

E Other methods
M W1 W2 W3 N method in[19]

5 5.0(−4) 6.1(−5) 1.8(−4) 32 7.9(−4)
10 3.2(−5) 6.5(−6) 1.2(−5) 64 6.5(−5)
20 1.6(−6) 4.0(−8) 2.3(−7) 128 1.6(−5)
30 1.3(−7) 5.4(−9) 7.2(−9) 256 4.1(−6)
40 1.5(−8) 1.5(−10) 4.4(−10) 512 1.1(−6)
50 2.0(−9) 2.7(−11) 5.4(−11) − −

with the exact solution x(t) = t3et.
In the Table 4, the maximum absolute errors of the proposed method with different weights are given. The table
show that the proposed method is more accurate compared to the classic sinc method by selecting some proper weight
functions.

Table 4. The maximum absolute errors for example 6.3.

E
M W1 W2 W3

10 9.6(−4) 1.0(−4) 5.7(−4)
30 4.3(−6) 1.2(−7) 9.1(−8)
50 5.7(−8) 5.9(−10) 4.2(−9)
70 1.4(−9) 1.7(−11) 5.2(−11)

Example 6.4. Consider the following singular singularly perturbed boundary value problems [7, 17]

εx′′′(t) +
2

t
x′′(t) + x′(t) = −x(t) +

(
1− 2

εt

) sin
(

t√
ε

)
sin
(

1√
ε

) ,
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x(0) = 0, x(1) = 1, x′(1) =
cos
(

1√
ε

)
√
ε sin

(
1√
ε

) ,
with the exact solution x(t) =

sin
(

t√
ε

)
sin

(
1√
ε

) .
In the Table 5, the maximum absolute errors of the proposed method with different weight functions are given, and
they are compared with the results of NQBSA[7] and QBSM[17] methods. The results of this table show that our
method is much more accurate than other methods.

Table 5. The maximum absolute errors for example 6.4 with ε = 10−2.

E Other methods
M W1 W2 W3 N NQBSA[7] QBSM [17]

16 7.5(−2) 2.8(−2) 6.2(−2) 16 3.2(−3) 2.1(−2)
32 2.1(−3) 3.7(−4) 1.4(−3) 32 9.8(−4) 6.6(−3)
64 1.4(−5) 1.2(−6) 7.6(−6) 64 5.4(−5) 1.5(−3)

128 7.8(−9) 3.5(−10) 3.8(−9) 128 3.4(−6) 3.8(−4)

Remark: As the results of Examples 6.3 and 6.4 show, our method is efficient in controlling the singularity and
works well in dealing with this type of problem, because the singularity of the equation occurs at the end point of
the interval. And because most of the sinc grid points are gathered near the endpoints of the interval, it helps us to
control the singularity well.

7. Conclusion

This article introduced a non-classical sinc-collocation method to solve the third-order boundary value problems.
The properties of this method have been used to reduce the computations of these problems to some algebraic
equations. It has been shown theoretically, that scheme is efficient and achieves exponential convergence. The
convergence exponential rate of the proposed method shows that this method can achieve high accuracy with moderate
computational effort. Finally, the applicability and accuracy of the method are checked on some examples. The results
of these examples show that in our method, by selecting proper weights, the results are better than the classic sinc-
collocation method. Also, our method is more accurate compared to other methods.
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