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Abstract  
Tree structures are complex and random in nature but they follow some specific rules according to their various kinds. The 

objective of this work is to model three fractal trees’ dynamic behavior in the mechanical shaking process and study the effect 

of the bifurcation ratio and the length-order ratio (pruning ratio) on the frequency response and the percentage of the harvested 

fruit. Experimentally the static loadings are carried out on the trunk and branches of the tree to obtain their important elastic 

properties. In order to obtain viscoelastic properties of the tree, its dynamic free vibration is examined. The fractal trees are 

modeled with an equivalent multi degree of freedom mass-spring models and the governing equations of motion are derived 

by means of Newton’s second law; then, they are solved numerically for some sample fractal trees. Consequently, for different 

values of the bifurcation ratio and the length-order ratio (fractal dimension), the displacement of the fruit is calculated and the 

displacement amplitude of the fruit is obtained. Also, the effects of the tree structures and pruning ratios on the displacement 

amplitude of the fruit are discussed. 
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 چکیده 

 ازیمدل سکار  نیکنند. هدف از ا یم یرویپ یخاص نیاز قوان شان هستند اما با توجه به انواع مختلف یو تصادف دهیچیپ عتیدر طب یدرخت یساختارها

رصد و د ینسبت دو شاخه شدن و نسبت هرس بر پاسخ فرکانس ریو مطالعه تأث یکیتکان دادن مکان ندیسه درخت فراکتال در فرآ یکینامیرفتار د

د. نشو یدرخت وارد م یتنه و شاخه ها یبر رو یکیاستات یبارها ،یکیخواص مهم الاست برای بدست آوردن یست. به طور تجربه ،برداشت شده یهاوهیم

فنر -جرممعادل  یها. درختان فراکتال با مدلمی شود یآن بررس یکینامیدرخت، ارتعاش آزاد د کیسکوالاستیبه دست آوردن خواص و یبراهمچنین 

 یخبر یبرا یسپس، آنها به صورت عدد ؛ندیآیبه دست م وتنیو معادلات حاکم بر حرکت با استفاده از قانون دوم ن شوندیم مدل سازی یچند درجه آزاد

 نهاممحاسبه شده و د وهیم ییمختلف نسبت انشعاب و نسبت هرس )بعد فراکتال(، جابجا ریمقاد یبرا جهیشوند. در نت یاز درختان فراکتال نمونه حل م

   . ردیگیمورد بحث قرار م وهیم ییهرس بر دامنه جابجا نسبت هایو  یدرخت یاثرات ساختارها نی. همچندیآ یبه دست م وهیم ییجابجا

 فراکتالی، بعد فراکتال، نسبت دو شاخه شدن، نسبت هرس و پاسخ فرکانسیهای کلیدی: ساختارهای واژه
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Introduction 

Fruit shakers shake the trunk or branches or 

have contact heads with rods that extend into 

the canopy (Giametta and Bernardi, 2010; 

Lavee, 2010; Ravetti and Robb, 2010; Tous et al., 2010; 

Vieri and Sarri, 2010; Sola-Guirado et al., 2014; Moreno 

et al., 2015; Sola-Guirado et al., 2016; Zhang 

et al., 2016; Sola-Guirado et al., 2018; Peça et 

al., 2019). Frequency and amplitude are 

among the principal operating parameters of 

the shakers concerning humans, trees, and fruit  
(El Attar et al., 2004; Blanco-Roldán et al., 

2009; Zhou et al., 2013; He et al., 2017). Due 

to the damage of high frequency on humans, 

the manufacturers must declare the 

acceleration value in the machine instruction 

manual (Saraçoğlu et al., 2011; Deboli et al., 

2014). However, manufacturers of shakers do 

not often know which variety of their 

machines will be used on; therefore, they 

design shakers with fixed acceleration and 

frequency values leaving the operators the 

responsibility of choosing the suitable shaking 

mode (Costa et al., 2013). 

Fractal trees have been employed in a wide 

variety of applications including drainage networks, 

actual plants and trees, root systems, bronchial 

systems, cardiovascular systems, and evolution 

(Newman et al., 1997). Many scientists strongly have 

opinion that fractal geometry is a revolutionary area 

of mathematics which has deep impact on every 

branch of science fields. For two thousand years, it’s 

been tried to describe nature with the help of 

Euclidean geometry. But it does not follow 

Euclidean geometry because biological systems are 

predominantly irregular, complex and non-linear. 

Therefore, irregularities of biological system cannot 

be quantified by means of classical Euclidean 

geometry. In order to overcome these limitations of 

Euclidean geometry, Mandelbrot first time 

formalized the idea of fractal dimension 

(Mandelbrot, 1967). He introduced the term "fractal 

geometry" and attempted to describe the behavior of 

chaos in nature. The fractal geometry is one of the 

important tools to explain true geometry of nature. 

In fact, this new area of mathematics enhances the 

power of Euclidean geometry. In addition, 

Euclidean geometry deals with objects in integer 

dimensions but fractal geometry deals with non-

integer dimension.  

Tree structures are complex and random in 

nature but they follow some specific rules according 

to their various kinds. A mathematical description 

of these structures seems to require a large number 

of independent parameters. However, it has been 

shown that geometrical features of most botanical 

structures can be described by only a few 

parameters using fractal theory (Mandelbrot, 1983). 

On the other hand, tree is truly a fractal object so 

that it is difficult to describe its shape in terms of 

Euclidean geometry. 

The term, ‘fractal,’ comes from the Latin word 

‘Fractus’ which means ‘broken’ or ‘irregular’ or 

‘unsmooth’ (Rian et al., 2007). Before one can apply 

fractal analysis to biological objects, it is necessary 

to understand the definition of a fractal (Schroeder, 

1991; Peitgen et al., 1992). Fractals or fractal objects 

are self-similar structures or scale-invariant 

structures (Mandelbrot, 1982; Mandelbrot, 1983) and 

they formed by a repetitive process in which each 

repetition builds on the prior result. In addition 

fractals have unique dimensions (roughness) that 

can be mathematically described. The properties of 

self-similar repetitions, abundance of textural 

details, and cascades of shape in architecture have 

been characterized by fractal geometry (Bovill, 

1996). Fractals are objects that show self-similarity 

at different magnifications. The fractal dimension is 

a measure of the roughness of a fractal structure.  

It can be understood as a form of symmetry. 

Fractals are symmetric under changes of scale, 

which means that fractals are invariant under a 

change of length scale. In other words, fractals look 

the same under various degrees of magnification or 

scale. This definition is true for regular or 

deterministic fractals, such as those that may be 

generated on a computer by joining together similar 

shapes according to an algorithm (Masters, 2004). 

Obviously, the dynamic response of a tree depends 

heavily on its actual geometric structure as well as 

its physical properties. Most trees have a branched 

structure, expressing repeating architectures on 

different scales. Fractal analysis is used especially 

for the evaluation of structural properties of soil. 

Oleschko et al. (1998) show the estimation of the 

fractal dimension of the soil solid and pore systems 

along the lines and across areas as useful parameter 

for monitoring the impact of tillage on physical 

properties of soil and also for evaluation of soil 

compaction degree.  

Feder (1988) considerably developed the fractal 

analysis. The first Mandelbrot’s works were from 

the field of geophysics. They were treated by the 

characteristics of seacoast relief. Mandelbrot 

showed that the curves observed at the different 

scales are able to refer one to another in form of 

power low. The exponent was denominating the 

fractal dimension. Afterward Mandelbrot applied 

the concept of fractal geometry on the areas as price 

diversification, frequency of words in the books, 
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embranchment of respiration tubes, rivers, and tree 

branches (Mandelbrot, 1982). In this paper, the 

dynamic response of fractal trees with self-similar 

structures in harvesting process by trunk shakers is 

analyzed. The objective of this document is to 

improve force transferred to fruits in harvesting 

process and also, to evaluate fruit response 

frequency in the different tree structures (with 

different fractal dimension) in mechanical 

harvesting system by trunk shaker. The response 

amplitudes of the olive tree are determined in terms 

of shaker excitation frequency. 

  
Materials and methods 

Case study 

This study is carried out on the six years old olive tree in 

Dez lake region (Iran). In order to evaluate realistic 

dynamic response of the olive trees (with different 

structures) in harvesting process; at first, the elastic and 

viscoelastic properties of the tree must be determined. 

Therefore, static and dynamic tests were carried out on 

the olive tree. A summary of static and dynamic (pull and 

release test) tests results are presented in Tables 1-3: 

 

 
Table 1. Results of static pull test 

Years Old Tree 
Force 

(N) 

Deflection of 

the Trunk 

(m) 

Stiffness Coefficient 

of the Trunk 

 (N/m) 

For Five Years 
Old Tree 

100 0.016 6250 

120 0.019 6315.789 

140 0.022 6363.636 

For Six Years 

Old Tree 

100 0.015 6666.667 

120 0.018 6666.667 

140 0.021 6666.667 

For Seven 
Years Old Tree 

100 0.015 6666.667 

120 0.017 7058.824 

 140 0.02 7000 

 

Table 2. Results of free vibration test for olive trunk 

Years Old 
Tree 

Force (N) 𝐱𝟏(𝐦𝐦) 𝐱𝟐(𝐦𝐦) 𝛅𝐓𝐫𝐮𝐧𝐤 = 𝐥𝐧
𝐱𝟏

𝐱𝟐

 

For Five 

Years Old 

Tree 

100 3 1 1.098612289 

120 4 2 0.693147181 

140 5 2.2 0.820980552 

For Six 
Years Old 

Tree 

100 3 1 1.098612289 

120 4 2 0.693147181 

140 5 2.2 0.820980552 

For Seven 
Years Old 

Tree 

100 3 1 1.098612289 

120 4 2 0.693147181 

140 5 2.2 0.820980552 

 

Table 3. Results of tree vibration test for olive fruit 

 Force (N) 𝐱𝟏(𝐦𝐦) 𝐱𝟐(𝐦𝐦) 𝛅𝐓𝐫𝐮𝐧𝐤 = 𝐥𝐧
𝐱𝟏

𝐱𝟐

 

For Fruit of 

the Olive 

Tree 

100 5.5 5 0.09531018 

120 5 4.5 0.10536052 

140 6 5 0.18232156 

 

In the second place, to describe physical modeling 

of trees, and in particular the dynamic behavior of 

vibrant tree with different structures, theoretical 

fractal trees are considered (Exact self-similarity). 

These fractals contain exact copies of them self 

through all scales. These are idealized structures 

with self-repeating structures. As shown in Fig 1, a 

fractal olive tree with seven levels of branching is 

used for this paper: 

 

 
Fig 1. A schematic side view of the 

 seven levels of branching for a fractal tree structure. 

 

  

The bottom level belongs to the trunk and other 

levels are considered for the canopy tree. A level is 

a group of branches that can be considered a node 

in tree and at a node where an originating branch 

divides into two or n subsequent branches. The 

branching angle for a subsequent branch is defined 

by the angle between the originating and subsequent 

branches. For the describe branching between 

branch N and branches N+1 in a fractal model, it’s 

required to obtain geometric parameters. Geometric 

parameters of the olive tree were determined that 

consist of three parameters: diameters and lengths 

of each branch in different levels, the angle of 

branching, and the number of levels of branching. 

In addition, for using the aforementioned 

parameters the bifurcation ratio is introduced as 

follow (Horton, 1945): 

 

𝑅𝑏 =
𝑁𝑖

𝑁𝑖+1

 (1) 

 

Also, the length-order ratio or pruning ratio is as 

follows: 

𝑅𝑟 =
𝑟𝑖+1

𝑟𝑖
 (2) 

 

Where, 𝑁𝑖 is the number of branches of level i, and 

𝑟𝑖 is the mean length of branches of level i. In order 

to illustrate relationship the bifurcation ratio and 

pruning ratio of the tree, fractal dimension is 
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introduced as follow (Newman et al., 1997): 

𝐷 =
ln𝑅𝑏

ln 𝑅𝑟

 (3) 

In order to construct fractal algorithms for this 

paper, it’s considered the olive tree (with a variety 

of fractal structures) grows from bottom up by 

branching over and over again and then branches 

can be split into two (binary fractal), or three 

(ternary fractal) and or four (quadruple fractal) 

lateral segments that each branch away from the 

original branch’s axis by an angle. Then this process 

repeats in canopy’s five successive levels. In 

addition, each branch in a given level shares an 

identical (equal) length and diameters with other 

branches in that level and for this model tree 

branches are assumed not to taper. A summary of 

main data of the sample fractal tree is presented in 

Table 4: 

 
Table 4. Main data of the sample fractal tree 

The 

Number of 
the Levels 

The Diameter 

of the Levels 

(𝐦) 

The Length of the Levels (𝐦) 

Rr = 0.25 Rr = 0.5 Rr = 0.75 

Level 
(1) 

0.22 1.00 1.00 1.00 

Level 

(2) 
0.11 0.25 0.5 0.75 

Level 

(3) 
0.063 0.0625 0.25 0.5625 

Level 

(4) 
0.0367 0.0156 0.125 0.4218 

Level 
(5) 

0.0211 0.003906 0.625 0.3164 

Level 

(6) 
0.002 0.014 0.014 0.014 

Level 
(7) 

0.04 0.02 0.02 0.02 

 
Absolute Binary Fractal Model 

In order to construct this fractal tree, it’s used from 

a generator that its structure has constant bifurcation 

ratio (𝑅𝑏 = 1 2⁄ ) and a variety of the pruning ratio 

(𝑅𝑟 = 0.25, 0.5, 0.75) so that fractal dimensions of 

this case are 0.5, 1.00 and 2.414 respectively. The 

first-level branch extends from tree base to its trunk 

end and there is a tip node at its end. The tip node is 

then divided into two equal branches. Also the 

second-level branches extend from its tip to the 

other tip node at the third-level. It can be noted that 

in this case, highest nodes are then divided into new 

four equal branches. The end of each new branch at 

the third-level, are separated into eight equal 

branches. So that the generated eight equal branches 

of the fourth-level are divided into sixteen new 

identical branches. In the final-levels, there are 

sixteen stem and fruit. As it can be seen from above, 

binary tree grows up very regularly with constant 

bifurcation ratio. 

Absolute Ternary Fractal Model 

The construction of presented fractal model has 

constant bifurcation ratio (𝑅𝑏 = 1 3⁄ ) and a variety 

of the pruning ratio (𝑅𝑟 = 0.25, 0.5, 0.75) so that 

the fractal dimensions of this case are 0.778, 1.556 

and 3.758 respectively. In this case, the first-level 

branch extends from its base to stalk end and there 

is a tip node at its end and tip node is then divided 

into three equal branches. Also, the second-level 

branches extend from its base to the other tip node 

at the third-level. In order to illustrate third-level, 

highest nodes are then divided into new nine equal 

branches. The end of each new branch at the third-

level, are separated into 27 equal branches. So that 

the generated 27 equal branches of the fourth-level 

are divided into 81 new identical branches. In the 

final-levels, there are 81 stem and fruit. In both 

aforementioned cases, the variety of tree shapes 

could be captured by change in the pruning ratio 

meanwhile its bifurcation ratio was constant. Also, 

the generator can be considered with a variety of 
bifurcation ratio and constant pruning ratio that the 

captured models in both states are analyzed. 

 
Absolute Quadruple Fractal Model 
For the design of this fractal tree model, its structure has 

constant bifurcation ratio (𝑅𝑏 = 1 4⁄ ) and a variety of 

pruning ratio ( 𝑅𝑟 = 0.25, 0.5, 0.75 ) so that fractal 

dimensions of this case are 1.00, 2.00 and 4.829 

respectively. In this case, the first-level branch extends 

from its base to stalk end and there is a tip node at its end 

and tip node is then divided into four equal branches. 

Also, the second-level branches extend from its base to 

the other tip node at the third-level. In order to illustrate 

third-level, highest nodes are then divided into new 16 

equal branches. The end of each new branch at the third-

level, are separated into 64 equal branches. So that the 

generated 64 equal branches of the fourth-level are 

divided into 256 new identical branches. In the final-

levels, there are 256 stem and fruit. 

 

Ternary-Binary compound Fractal Model 

In order to construct this fractal tree, it’s used from 

a generator that its structure has two constant 

bifurcation ratio ( 𝑅𝑏 = 1 3⁄ , 𝑅𝑏 = 1/2 ) and a 

variety of the pruning ratio (𝑅𝑟 = 0.25, 0.5, 0.75) so 

that fractal dimensions of the ternary and binary 

levels have two different quantities. Obviously, it 

can be noted that the fractal dimension of the ternary 

levels are more than the binary levels. This model 

has three samples that each sample is distinct by a 

variety of pruning ratio as shown in Table 5: 
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Table 5. The branch’s number of each level and its 

fractal dimensions in three sample olive trees  

(Ternary-Binary Compound Fractal Tree Model) 
The 

Number  
of the 

Levels 

1 2 3 4 5 6 7 

Fractal Dimension 

Rr = 0.25 Rr = 0.5 Rr = 0.75 

Sample        D1
∗  D2

∗∗ D1 D2 D1 D2 

1 1 3 9 27 54 54 54 0.778 0.5 1.556 1.0 3.758 2.414 

2 1 3 9 18 36 36 36 0.778 0.5 1.556 1.0 3.758 2.414 

3 1 3 6 12 24 24 24 0.778 0.5 1.556 1.0 3.758 2.414 

* Fractal dimension of the ternary levels 
** Fractal dimension of the binary levels 

 

 

Quadruple-Ternary- Binary compound Fractal 

Model 

The generator for this construction is made from 

combining bifurcation ratios of the quadruple, 

ternary and binary models (𝑅𝑏 = 1 4⁄ , 𝑅𝑏 = 1/3, 

𝑅𝑏 = 1/2) and a variety of the pruning ratio (𝑅𝑟 =
0.25, 0.5, 0.75). Fractal dimension of the tree in this 

model has three different dimensions in various 

levels that include dimensions of the quadruple, 

ternary and binary levels. Also, this fractal tree 

model has six samples that each sample is distinct 

by a specific pruning ratio as shown in Table 6:

Table 6. The branch’s number of each level and its fractal dimensions in six sample olive trees 

(Quadruple-Ternary- Binary Compound Fractal Model) 
The 

Number 
of the 

Levels 

Level 
(1) 

Level 
(2) 

Level 
(3) 

Level 
(4) 

Level 
(5) 

Level 
(6) 

Level 
(7) 

Fractal Dimension 

Rr = 0.25 Rr = 0.5 Rr = 0.75 

Sample        D1
∗  D2

∗∗ D3
∗∗∗ D1 D2 D3 D1 D2 D3 

1 1 4 16 64 192 192 192 1.0 0.778 0 2.0 1.556 0 4.829 3.758 0 

2 1 4 16 48 144 144 144 1.0 0.778 0 2.0 1.556 0 4.829 3.758 0 

3 1 4 12 36 108 108 108 1.0 0.778 0 2.0 1.556 0 4.829 3.758 0 

4 1 4 12 36 72 72 72 1.0 0.778 0.5 2.0 1.556 1.0 4.829 3.758 2.414 

5 1 4 12 24 48 48 48 1.0 0.778 0.5 2.0 1.556 1.0 4.829 3.758 2.414 

6 1 4 8 16 32 32 32 1.0 0 0.5 2.0 0 1.0 4.829 0 2.414 

* Fractal dimension of the quadruple levels 

** Fractal dimension of the ternary levels 
*** Fractal dimension of the binary levels 

 

Mathematical Modeling: 

As shown in Fig 2, a fractal tree with masses of the 

trunk, branch and fruits is considered. The lower 

part of the fractal tree is coupled to a set of shaker, 

which vibrates fractal tree by a harmonic force. The 

equivalent mass of the trunk, branches and fruit 

are M1, M2, … and Mn , respectively: 

 

 
Fig 2. A schematic side view of the fruit tree in 

mechanical harvesting process 

 

For comparison, mathematical modeling and 

analysis dynamic behavior of the vibrant-fractal tree 

by shaker (rotating eccentric weights type) is 

considered in a mass-spring system with Multiple-

degree-of-freedom (MDOF) and as a fractal 

structure, that it was used to determine a dynamic 

structural analysis of fractal trees as shown in Fig 3 

(Alstrup et al., 2005): 

 

 
Fig 3. A schematic top view of the mass-spring 

system for a fractal tree structure  

 

For measuring displacement amplitude of the each 

level, symbolic points are shown (one for each 

level) in Fig 1.The differential equations motion of 

the equivalent mass-spring linear model of the 

fractal tree is derived by means of Newton’s second 

law in each level as follow:  
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𝑀1𝑥̈1−𝑘1𝑥1 − 𝑆𝑘2(𝑥1 − 𝑥2) − 𝑐1𝑥̇1 −

𝑆𝑐2(𝑥̇1 − 𝑥̇2) + 𝐹0 𝑠𝑖𝑛 𝜔𝑡 = 0

𝑆𝑀2𝑥̈2 + 𝑆𝑘2(𝑥1 − 𝑥2) − 𝑍𝑘3(𝑥2 − 𝑥3) +

𝑆𝑐2(𝑥̇1 − 𝑥̇2) − 𝑍𝑐3(𝑥̇2 − 𝑥̇3) = 0
⋮
⋮

𝐺𝑀𝑛−1𝑥̈𝑛−1 + 𝐺𝑘𝑛−1(𝑥𝑛−2 − 𝑥𝑛−1) − 𝐺𝑘𝑛(𝑥𝑛−1 − 𝑥𝑛) +

𝐺𝑐𝑛−1(𝑥̇𝑛−2 − 𝑥̇𝑛−1) − 𝐺𝑐𝑛(𝑥̇𝑛−1 − 𝑥̇𝑛) = 0

𝐺𝑀𝑛𝑥̈𝑛 + 𝐺𝑘𝑛(𝑥𝑛−1 − 𝑥𝑛) + 𝐺𝑐𝑛(𝑥̇𝑛−1 − 𝑥̇𝑛) = 0

 
 

(4) 

Also, these equations can be expressed in matrix 

form as: 

[𝑴]𝑥̈⃗ + [𝒄]𝑥̇⃗ + [𝒌]𝑥⃗ = 𝑭⃗⃗⃗ (5) 

where [𝐌] are the components of the mass matrix 

depending on the values of the stalk, branch or fruit 

tree in each level (kg), [𝐜] are the elements of the 

equivalent viscous damping matrix in each level 

(N. s/m), [𝐤] are the components of stiffness matrix 

depending on the values of the apparent spring 

constant of the stalk, branch or fruit tree in each 

level ( N/m ), ω  is the shaking frequency or 

excitation frequency (rad/s ), t is the time (s) and 

the vectors x⃗⃗ , ẋ⃗⃗  and ẍ⃗⃗  indicate, respectively, the 

vectors of displacements (m), velocities (m s⁄ ), and 

accelerations (m s2⁄ ) of the stalk, branch or fruit 

tree in each level, and 𝐅⃗  represents the vector of 

force acting on the trunk mass (N). The components 

of the mass, viscose damping, stiffness, force 

matrices as follow:  

𝐌 =

[
 
 
 
 
 
𝑀1 0 0 … 0 0
0 𝑆𝑀2 0 … 0 0
0 0 𝑍𝑀3 … 0 0

⋮ ⋱
0 0 0 … 𝐺𝑀𝑛−1 0
0 0 0 … 0 𝐺𝑀𝑛]

 
 
 
 
 

 (6) 

And  

𝐂 =

[
 
 
 
 
 
𝑐1 + 𝑆𝑐2 −𝑆𝑐2 0 … 0 0
−𝑆𝑐2 𝑆𝑐2 + 𝑍𝑐3 −𝑍𝑐3 … 0 0

0 −𝑍𝑐3 𝑍𝑐3 + 𝑌𝑐4 … 0 0

⋮
0 0 0 … 𝐺𝑐𝑛−1 + 𝐺𝑐𝑛 −𝐺𝑐𝑛

0 0 0 … −𝐺𝑐𝑛 𝐺𝑐𝑛 ]
 
 
 
 
 

 (7) 

And 
𝐊

=

[
 
 
 
 
 
𝑘1 + 𝑆𝑘2 −𝑆𝑘2 0 … 0 0

−𝑆𝑘2 𝑆𝑘2 + 𝑍𝑘3 −𝑍𝑘3 … 0 0
0 −𝑍𝑘3 𝑍𝑘3 + 𝑌𝑘4 … 0 0

⋮
0 0 0 … 𝐺𝑘𝑛−1 + 𝐺𝑘𝑛 −𝐺𝑘𝑛

0 0 0 … −𝐺𝑘𝑛 𝐺𝑘𝑛 ]
 
 
 
 
 

 
(8) 

Where S, Z, Y, … and G are numbers of the 

branches in each level, respectively. The applied 

force in this study is frequency proportional 

actuation: 

𝑭⃗⃗⃗ = [𝑚𝑟𝜔2 0 0 0 … 0 0 0 0]𝑇 (9) 

Which  m is the unbalanced mass (kg), r is the distance 

from the axis to the center of mass (m) in the inertia 

shaker with rotating eccentric weights mechanism. 

 

Eigen Frequency Analysis 

In order to determine the natural frequencies and the 

normal modes, the eigenvalue problem corresponding to 

the vibration of the undamped system is solved. The free 

vibration of the undamped system can be governed by the 

following (10): 

[𝑴]𝑥̈⃗ + [𝒌]𝑥⃗ = 0⃗⃗ (10) 

The solution of (10) is assumed to be harmonic as: 

𝑥⃗(𝑡) = 𝐴 sin(𝜔𝑡 + 𝜙)      (11) 

So that: 

𝑥̈⃗(𝑡) = −𝜔2𝐴 sin(𝜔𝑡 + 𝜙) (12) 

Where 𝐴 is the vector of amplitudes of the 𝑥⃗(𝑡), 𝜙 

is the phase angle. Substituting (11) and (12) into 

(10) gives: 

[[ 𝒌 ] −  ω2[𝐦]]𝐴 =  0⃗⃗ (13) 

Equation (13) represents a system of n algebraic 

homogeneous equations with unknown coefficients 

A1, A2, …  andAn  (amplitudes of  x1, x2, …  andxn .) 

For a nontrivial solution of the vector of 

coefficients A⃗⃗⃗ , the determinant of the coefficient 

matrix must be equal to zero: 

|[𝑲] − [𝑴]𝜔2| = 0 (14) 

Equation (14) is the characteristic equation or 

frequency equation. The roots of this equation give 

the n Eigenvalues (ω1
2 , ω2

2 ,…,ωn
2 ). The positive 

square roots of the Eigenvalues yield the natural 

frequencies of the system (𝜔1, 𝜔2,…, 𝜔𝑛). 

 

Frequency Response of the System 

In order to determine frequency response of the each 

level’s component with Multiple-degree-of-

freedom (MDOF) in considered fractal tree, matrix 

methods are indispensable. For solution of the (5) is 

assumed to be harmonic as (𝑥⃗(𝑡) = 𝐴 sin(𝜔𝑡 + 𝜙)) 

and substituting this equation into it and rearranging 

takes the following form: 

 [𝐴] = [−𝜔2[𝑴] + 𝑖𝜔[𝒄] + [𝒌]]
−𝟏

[𝑭⃗⃗⃗]   (15) 

Equation (15) denotes displacement amplitude of 

each level’s components in fractal tree system when 

it is harvested by inertia shaker with rotating 

eccentric weights mechanism. 
 

Results and discussion 

The olive tree (with different fractal structures) 

vibrated by shaker (rotating eccentric weights type) 

is modeled with an equivalent Multiple-degree-of-

freedom (MDOF) mass-spring system. The 

displacement amplitude of the fruit (D.A.F) is 

calculated for different values of the shaker 

excitation frequency. Then the D.A.F is calculated 
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for olive trees with three different bifurcation ratio 

( 𝑅𝑏 = 1 4⁄ , 𝑅𝑏 = 1/3 , 𝑅𝑏 = 1/2 ) and pruning 

ratios ( 𝑅𝑟 = 0.25, 0.5, 0.75 ). In the sixth and 

seventh levels, the fruit is modeled with a two 

degree of freedom mass-spring system (in which the 

stem and fruit are modeled with a simple 

pendulum). So the considered DOF is one number 

more than the age the tree. The amplitude and area 

under the frequency response curve represent the 

transferred energy in the oscillations. The greatest 

energy occurs at the fundamental or first mode 

(James, 2010). The frequency response of the fruit 

for three fractal tree models with different pruning 

ratios is depicted in Figs 4 (a-c). Fig 4(a) shows the 

frequency response of the fruit for the binary, 

ternary and quadruple fractal models with short 

pruning ratio ( 𝑅𝑟 = 0.25 ). As shown from this 

figure, these models have exactly the same quantity 

of the maximum D.A.F. In addition, it can be seen 

from Fig 4b that the maximum D.A.F of the 

quadruple fractal tree is more than other models. 

Also in Fig 4c, the maximum D.A.F belongs to 

binary model. So it can be said that transferred force 

into the fruit will have significant increase by tall 

pruning operation in binary model.  
 

  
(a) (b) 

 

(c) 

Fig 4. D.A.F of the fractal tree with the same 

pruning ratio and different bifurcation ratios, (a): 

Rr=0.25, (b): Rr=0.5 and (c): Rr=0.75 

 

Fig 5 shows the D.A.F in different fractal tree 

models with a variety of the length-order ratios 

(pruning ratios) and constant bifurcation ratio. As 

shown in Figs 5(a-b) by increasing quantity of 

pruning ratio, D.A.F of the binary and ternary 

models (𝑅𝑏 = 1 2⁄ , 1 3⁄ ) is increased respectively. 

But at the quadruple model (𝑅𝑏 = 1 4⁄ ) as shown in 

Fig 5c, the maximum and minimum of the D.A.F 

are occurred in pruning ratios ( 𝑅𝑟 = 0.5, 0.75 ) 

respectively. Also, the results of the Figs 4, 5 show 

that in two states (fractal tree with the same pruning 

ratio-different bifurcation ratios and fractal tree with 

different pruning ratios-the same bifurcation ratios), 

the D.A.F of both models have an equal in quantity 

of the transferred force. 
 

  

(a) (b) 

 

(c) 

Fig 5. D.A.F of the fractal tree with different the 

pruning ratios and the same bifurcation ratios, (a): 

binary fractal (Rb = 1/2), (b): ternary fractal (Rb = 

1/3) and (c): quadruple fractal (Rb = 1/4) 
 

Fig. 6 shows frequency response of the ternary-

binary fractal tree model with different pruning 

ratios and the bifurcation ratios. It can be figured out 

from Fig. 6 that the maximum of the D.A.F is gotten 

by applying tall pruning ratio ( 𝑅𝑟 = 0.75 ) in 

ternary-binary model. On the other hand, increasing 

the number of the binary branches is affected 

sharply on the maximum D.A.F of this model. 

 

  
(b) (a) 

 
(c) 

Fig 6. D.A.F of the compound fractal model 

(ternary-binary fractal tree) with different the 

pruning ratios and the bifurcation ratios (Rb=1/2, 

1/3), (a): sample 1, (b): sample 2 and (c): sample 3 
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The frequency response of the fruit for compound 

fractal models (quadruple-ternary-binary fractal 

trees) with different pruning and the bifurcation 

ratios in six cases is depicted in Figs 7 (a-f). Fig. 7a 

shows that the fruit of this fractal model (sample 1) 

is received significant transferred force by applying 

specific pruning ratio 0.5. Therefore, it is true to say 

that quadruple branches have main role into transfer 

the maximum shaker force to the fruit in this model. 

As it is shown in Fig 7 (b-c), by increasing the 

number of the ternary branches, dominant fractal is 

ternary type in this model so that transferred force 

to the fruit is received significant by applying 

pruning ratio 0.75 to other pruning ratios. The 

results of Fig 7 (d-f) demonstrate that the maximum 

of the D.A.F is function of the binary branches in 

these models. As shown in these Figs, specific 

pruning ratio ( 𝑅𝑟 = 0.75 ) has global maximum 

D.A.F to other applied pruning ratios.  
 

  

 

(b) (a)  

  

 

(d) (c)  

  

 

(f) (e)  

Fig 7. D.A.F of the compound fractal model 

(quadruple–ternary- binary fractal tree) with 

different the pruning ratios and the bifurcation 

ratios (Rb=1/4, 1/3, 1/2), (a): sample 1, (b): sample 2, 

(c): sample 3, (d): sample 4, (e): sample 5 and (f): 

sample 6 

 

4. Conclusions 

A wide variety of fractal tree models have been 

developed for modeling the dynamic behavior of the 

vibrant olive tree with different structures. The 

obtained results of the mathematical modeling (with 

the same pruning ratio and different bifurcation 

ratios) have shown that by applying short pruning 

ratio (𝑅𝑟 = 0.25) to the three fractal models, fruit’s 

vibration amplitude and value of the force 

transferred to it could be equaled in each three 

models. On the other hand, bifurcation ratio’s role 

had not significant effect on force transferred to 

fruits whereas pruning ratio has a major effect on 

force transferred to fruits in harvest process.  

It has been observed from results that the 

maximum amplitude of the fruit, selected tall (𝑅𝑟 =
0.75) and average (𝑅𝑟 = 0.5) pruning ratio could 

increase the transferred force rate to fruit in binary, 

ternary and quadruple tree models, respectively. In 

addition, the findings of the figures (the fractal tree 

with the different pruning ratios and the same 

bifurcation ratios) have demonstrated that fruit’s 

vibration amplitude or D.A.F and value of the force 

transferred to it could be increased by applying the 

tall pruning ratio (𝑅𝑟 = 0.75) in binary and ternary 

tree models and the appropriate D.A.F of the 

quadruple model is affected by average pruning 

ratio (𝑅𝑟 = 0.5). In general, in order to have an 

effective mechanical harvest by trunk shaker, the 

proper pruning ratio should be selected considering 

type of the fractal tree models to obtain maximum 

fruit’s vibration amplitude and the value of the force 

transferred to it. The results of the mathematical 

modeling for compound fractal trees have 

confirmed that the maximum of the D.A.F is 

function of the type bifurcation ratios of branches in 

the final levels. The binary and ternary branch types 

in final levels have transferred the maximum value 

of the force transferred rate to fruit, therefore, 

transferred force’s dissipation will decrease to fruit 

which can increase the stress in the pedicle and the 

stem bottom and fruit removal of the trees will raise 

in shaking process. 
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