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Abstract
Tree structures are complex and random in nature but they follow some specific rules according to their various kinds. The
objective of this work is to model three fractal trees’ dynamic behavior in the mechanical shaking process and study the effect
of the bifurcation ratio and the length-order ratio (pruning ratio) on the frequency response and the percentage of the harvested
fruit. Experimentally the static loadings are carried out on the trunk and branches of the tree to obtain their important elastic
properties. In order to obtain viscoelastic properties of the tree, its dynamic free vibration is examined. The fractal trees are
modeled with an equivalent multi degree of freedom mass-spring models and the governing equations of motion are derived
by means of Newton’s second law; then, they are solved numerically for some sample fractal trees. Consequently, for different
values of the bifurcation ratio and the length-order ratio (fractal dimension), the displacement of the fruit is calculated and the
displacement amplitude of the fruit is obtained. Also, the effects of the tree structures and pruning ratios on the displacement
amplitude of the fruit are discussed.
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Introduction

Fruit shakers shake the trunk or branches or
have contact heads with rods that extend into
the canopy (Giametta and Bernardi, 2010;
Lavee, 2010; Ravetti and Robb, 2010; Tous et al., 2010;
Vieri and Sarri, 2010; Sola-Guirado et al., 2014; Moreno
et al., 2015; Sola-Guirado et al., 2016; Zhang
et al., 2016; Sola-Guirado et al., 2018; Peca et
al., 2019). Frequency and amplitude are
among the principal operating parameters of
the shakers concerning humans, trees, and fruit
(El Attar et al., 2004; Blanco-Roldan et al.,
2009; Zhou et al., 2013; He et al, 2017). Due
to the damage of high frequency on humans,
the manufacturers must declare the
acceleration value in the machine instruction
manual (Saragoglu et al., 2011, Deboli et al.,
2014). However, manufacturers of shakers do
not often know which variety of their
machines will be wused on; therefore, they
design shakers with fixed acceleration and
frequency values leaving the operators the
responsibility of choosing the suitable shaking
mode (Costa et al., 2013).

Fractal trees have been employed in a wide
variety of applications including drainage networks,
actual plants and trees, root systems, bronchial
systems, cardiovascular systems, and evolution
(Newman et al., 1997). Many scientists strongly have
opinion that fractal geometry is a revolutionary area
of mathematics which has deep impact on every
branch of science fields. For two thousand years, it’s
been tried to describe nature with the help of
Euclidean geometry. But it does not follow
Euclidean geometry because biological systems are
predominantly irregular, complex and non-linear.
Therefore, irregularities of biological system cannot
be quantified by means of classical Euclidean
geometry. In order to overcome these limitations of
Euclidean geometry, Mandelbrot first time
formalized the idea of fractal dimension
(Mandelbrot, 1967). He introduced the term "fractal
geometry" and attempted to describe the behavior of
chaos in nature. The fractal geometry is one of the
important tools to explain true geometry of nature.
In fact, this new area of mathematics enhances the
power of Euclidean geometry. In addition,
Euclidean geometry deals with objects in integer
dimensions but fractal geometry deals with non-
integer dimension.

Tree structures are complex and random in
nature but they follow some specific rules according
to their various kinds. A mathematical description
of these structures seems to require a large number
of independent parameters. However, it has been

shown that geometrical features of most botanical
structures can be described by only a few
parameters using fractal theory (Mandelbrot, 1983).
On the other hand, tree is truly a fractal object so
that it is difficult to describe its shape in terms of
Euclidean geometry.

The term, ‘fractal,” comes from the Latin word
‘Fractus’ which means ‘broken’ or ‘irregular’ or
‘unsmooth’ (Rian et al., 2007). Before one can apply
fractal analysis to biological objects, it is necessary
to understand the definition of a fractal (Schroeder,
1991; Peitgen et al., 1992). Fractals or fractal objects
are self-similar structures or scale-invariant
structures (Mandelbrot, 1982; Mandelbrot, 1983) and
they formed by a repetitive process in which each
repetition builds on the prior result. In addition
fractals have unique dimensions (roughness) that
can be mathematically described. The properties of
self-similar repetitions, abundance of textural
details, and cascades of shape in architecture have
been characterized by fractal geometry (Bovill,
1996). Fractals are objects that show self-similarity
at different magnifications. The fractal dimension is
a measure of the roughness of a fractal structure.

It can be understood as a form of symmetry.
Fractals are symmetric under changes of scale,
which means that fractals are invariant under a
change of length scale. In other words, fractals look
the same under various degrees of magnification or
scale. This definition is true for regular or
deterministic fractals, such as those that may be
generated on a computer by joining together similar
shapes according to an algorithm (Masters, 2004).
Obviously, the dynamic response of a tree depends
heavily on its actual geometric structure as well as
its physical properties. Most trees have a branched
structure, expressing repeating architectures on
different scales. Fractal analysis is used especially
for the evaluation of structural properties of soil.
Oleschko et al. (1998) show the estimation of the
fractal dimension of the soil solid and pore systems
along the lines and across areas as useful parameter
for monitoring the impact of tillage on physical
properties of soil and also for evaluation of soil
compaction degree.

Feder (1988) considerably developed the fractal
analysis. The first Mandelbrot’s works were from
the field of geophysics. They were treated by the
characteristics of seacoast relief. Mandelbrot
showed that the curves observed at the different
scales are able to refer one to another in form of
power low. The exponent was denominating the
fractal dimension. Afterward Mandelbrot applied
the concept of fractal geometry on the areas as price
diversification, frequency of words in the books,
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embranchment of respiration tubes, rivers, and tree
branches (Mandelbrot, 1982). In this paper, the
dynamic response of fractal trees with self-similar
structures in harvesting process by trunk shakers is
analyzed. The objective of this document is to
improve force transferred to fruits in harvesting
process and also, to evaluate fruit response
frequency in the different tree structures (with
different fractal dimension) in mechanical
harvesting system by trunk shaker. The response
amplitudes of the olive tree are determined in terms
of shaker excitation frequency.

Materials and methods

Case study

This study is carried out on the six years old olive tree in
Dez lake region (lran). In order to evaluate realistic
dynamic response of the olive trees (with different
structures) in harvesting process; at first, the elastic and
viscoelastic properties of the tree must be determined.
Therefore, static and dynamic tests were carried out on
the olive tree. A summary of static and dynamic (pull and
release test) tests results are presented in Tables 1-3:

Table 1. Results of static pull test

For Deflection of Stiffness Coefficient
orce the Trunk of the Trunk

Years Old Tree
® (m) (N/m)

. 100 0.016 6250

Forolzl:jvgrr\ggars 120 0.019 6315.789

140 0.022 6363.636

) 100 0.015 6666.667

FOE)IS(;XTL?FS 120 0.018 6666.667

140 0.021 6666.667

For Seven 100 0.015 6666.667

Years Old Tree 120 0.017 7058.824
140 0.02 7000

Table 2. Results of free vibration test for olive trunk

Yot Foce(N)  ximm) xmm)  Srom=In t
For Five 100 3 1 1.098612289
Years Old 120 4 2 0.693147181
Tree 140 5 2.2 0.820980552
For Six 100 3 1 1.098612289
Years Old 120 4 2 0.693147181
Tree 140 5 2.2 0.820980552
For Seven 100 3 1 1.098612289
Years Old 120 4 2 0.693147181
Tree 140 5 2.2 0.820980552

Table 3. Results of tree vibration test for olive fruit

X
Force(N) x;(mm) x,(mm) Sppnk = lnx—1
2

For Fruit of 100 5.5 5 0.09531018
the Olive 120 5 4.5 0.10536052
Tree 140 6 5 0.18232156

In the second place, to describe physical modeling
of trees, and in particular the dynamic behavior of
vibrant tree with different structures, theoretical
fractal trees are considered (Exact self-similarity).
These fractals contain exact copies of them self
through all scales. These are idealized structures
with self-repeating structures. As shown in Fig 1, a
fractal olive tree with seven levels of branching is
used for this paper:

Fig 1. A schematic side view of the
seven levels of branching for a fractal tree structure.

The bottom level belongs to the trunk and other
levels are considered for the canopy tree. A level is
a group of branches that can be considered a node
in tree and at a node where an originating branch
divides into two or n subsequent branches. The
branching angle for a subsequent branch is defined
by the angle between the originating and subsequent
branches. For the describe branching between
branch N and branches N+1 in a fractal model, it’s
required to obtain geometric parameters. Geometric
parameters of the olive tree were determined that
consist of three parameters: diameters and lengths
of each branch in different levels, the angle of
branching, and the number of levels of branching.
In addition, for wusing the aforementioned
parameters the bifurcation ratio is introduced as
follow (Horton, 1945):

N
Ry = l 1)
Niyq

Also, the length-order ratio or pruning ratio is as

follows:
Ti+1

R, =— 2

T

Where, N; is the number of branches of level i, and
1; is the mean length of branches of level i. In order
to illustrate relationship the bifurcation ratio and
pruning ratio of the tree, fractal dimension is



V) JL /Y o les ¥ 095 155,3LES gl 3lSo 4y 5

le&a.m 9 Lg‘i.w.” (S0 oy

introduced as follow (Newman et al., 1997):

InR,
" InR, ®)
In order to construct fractal algorithms for this
paper, it’s considered the olive tree (with a variety
of fractal structures) grows from bottom up by
branching over and over again and then branches
can be split into two (binary fractal), or three
(ternary fractal) and or four (quadruple fractal)
lateral segments that each branch away from the
original branch’s axis by an angle. Then this process
repeats in canopy’s five successive levels. In
addition, each branch in a given level shares an
identical (equal) length and diameters with other
branches in that level and for this model tree
branches are assumed not to taper. A summary of
main data of the sample fractal tree is presented in
Table 4:

Table 4. Main data of the sample fractal tree

The The Diameter The Length of the Levels (m)
Number of of the Levels
the Levels (m) R, =025 R,=05 R,=075
Level 0.22 1.00 1.00 1.00
(€]
Level
0.11 0.25 05 0.75
2
Lg’)e' 0.063 0.0625 0.25 0.5625
"(ejl’)e' 0.0367 0.0156 0.125 0.4218
L?g’)e' 0.0211 0.003906  0.625 0.3164
L(e%’)e' 0.002 0.014 0.014 0.014
Level 0.04 0.02 0.02 0.02

Absolute Binary Fractal Model

In order to construct this fractal tree, it’s used from
a generator that its structure has constant bifurcation
ratio (R, = 1/2) and a variety of the pruning ratio
(R, = 0.25,0.5,0.75) so that fractal dimensions of
this case are 0.5, 1.00 and 2.414 respectively. The
first-level branch extends from tree base to its trunk
end and there is a tip node at its end. The tip node is
then divided into two equal branches. Also the
second-level branches extend from its tip to the
other tip node at the third-level. It can be noted that
in this case, highest nodes are then divided into new
four equal branches. The end of each new branch at
the third-level, are separated into eight equal
branches. So that the generated eight equal branches
of the fourth-level are divided into sixteen new
identical branches. In the final-levels, there are
sixteen stem and fruit. As it can be seen from above,
binary tree grows up very regularly with constant
bifurcation ratio.

Absolute Ternary Fractal Model

The construction of presented fractal model has
constant bifurcation ratio (R, = 1/3) and a variety
of the pruning ratio (R, = 0.25,0.5,0.75) so that
the fractal dimensions of this case are 0.778, 1.556
and 3.758 respectively. In this case, the first-level
branch extends from its base to stalk end and there
IS a tip node at its end and tip node is then divided
into three equal branches. Also, the second-level
branches extend from its base to the other tip node
at the third-level. In order to illustrate third-level,
highest nodes are then divided into new nine equal
branches. The end of each new branch at the third-
level, are separated into 27 equal branches. So that
the generated 27 equal branches of the fourth-level
are divided into 81 new identical branches. In the
final-levels, there are 81 stem and fruit. In both
aforementioned cases, the variety of tree shapes
could be captured by change in the pruning ratio
meanwhile its bifurcation ratio was constant. Also,
the generator can be considered with a variety of
bifurcation ratio and constant pruning ratio that the
captured models in both states are analyzed.

Absolute Quadruple Fractal Model

For the design of this fractal tree model, its structure has
constant bifurcation ratio (R, = 1/4) and a variety of
pruning ratio ( R, = 0.25,0.5,0.75) so that fractal
dimensions of this case are 1.00, 2.00 and 4.829
respectively. In this case, the first-level branch extends
from its base to stalk end and there is a tip node at its end
and tip node is then divided into four equal branches.
Also, the second-level branches extend from its base to
the other tip node at the third-level. In order to illustrate
third-level, highest nodes are then divided into new 16
equal branches. The end of each new branch at the third-
level, are separated into 64 equal branches. So that the
generated 64 equal branches of the fourth-level are
divided into 256 new identical branches. In the final-
levels, there are 256 stem and fruit.

Ternary-Binary compound Fractal Model

In order to construct this fractal tree, it’s used from
a generator that its structure has two constant
bifurcation ratio (R, =1/3,R, =1/2) and a
variety of the pruning ratio (R, = 0.25,0.5,0.75) so
that fractal dimensions of the ternary and binary
levels have two different quantities. Obviously, it
can be noted that the fractal dimension of the ternary
levels are more than the binary levels. This model
has three samples that each sample is distinct by a
variety of pruning ratio as shown in Table 5:
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Table 5. The branch’s number of each level and its
fractal dimensions in three sample olive trees

(Ternary-Binary Compound Fractal Tree Model)

The Fractal Dimension

Quadruple-Ternary- Binary compound Fractal
Model

The generator for this construction is made from
combining bifurcation ratios of the quadruple,

Number .
ofthe 1 23 456 7 o s R-05 R =075 ternary and binary models (Rp = 1(4, Ry = 1/3,
Levels R, = 1/2) and a variety of the pruning ratio (R, =
Sample Di_D; D, D, D D 0.25,0.5,0.75). Fractal dimension of the tree in thi
1 1 3 927 545454 0778 05 1556 10 3.758 2414 : 'I 'h’ ' h). a_(icfa d ension ot the tree In this
5 1 3 918 36 36 36 0.778 05 1556 10 3758 2414 model has three different dimensions in various
3 1 3 612 242424 0778 05 1556 1.0 3.758 2.414 levels that include dimensions of the quadruple,
- Fractal dimension of the ternary levels ternary and binary levels. Also, this fractal tree
Fractal dimension of the binary levels . . . .
model has six samples that each sample is distinct
by a specific pruning ratio as shown in Table 6:
Table 6. The branch’s number of each level and its fractal dimensions in six sample olive trees
(Quadruple-Ternary- Binary Compound Fractal Model)
The : :
Number Level Level Level Level Level Level Level Fractal Dimension
ofte (1) (@ G @ G 6 O _ - _
Levels R, = 0.25 R, =05 R, =075
Sample D} D3 D Dy 5 D, D, D, D,
1 1 4 16 64 192 192 192 10 0778 0 20 1556 0 4829 3758 0
2 1 4 16 48 144 144 144 10 0778 0 20 1556 0 4829 3758 O
3 1 4 12 36 108 108 108 10 0778 0 20 1556 0 4829 3758 0
4 1 4 12 36 72 72 7210 0778 05 20 1556 10 4829 3758 2414
5 1 4 12 24 48 48 48 10 0778 05 20 1556 10 4.829 3758 2414
6 1 4 8 16 32 32 32 10 0 05 20 0 10 4829 0 2414

* Fractal dimension of the quadruple levels
** Fractal dimension of the ternary levels
*** Fractal dimension of the binary levels

Mathematical Modeling:

As shown in Fig 2, a fractal tree with masses of the
trunk, branch and fruits is considered. The lower
part of the fractal tree is coupled to a set of shaker,
which vibrates fractal tree by a harmonic force. The
equivalent mass of the trunk, branches and fruit
are M, M,, ...and M,, , respectively:

Fig 2. A schematic side view of the fruit tree in
mechanical harvesting process

For comparison, mathematical modeling and
analysis dynamic behavior of the vibrant-fractal tree
by shaker (rotating eccentric weights type) is
considered in a mass-spring system with Multiple-
degree-of-freedom (MDOF) and as a fractal
structure, that it was used to determine a dynamic
structural analysis of fractal trees as shown in Fig 3
(Alstrup et al., 2005):

Fig 3. A schematic top view of the mass-spring
system for a fractal tree structure

For measuring displacement amplitude of the each
level, symbolic points are shown (one for each
level) in Fig 1.The differential equations motion of
the equivalent mass-spring linear model of the
fractal tree is derived by means of Newton’s second
law in each level as follow:
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Myit —kyxy — Sky (X1 — x3) — €% —
Scy (%1 — %) + Fysinwt =0
SMyiy + Sky(xqy — x3) — Zk3(xy — x3) +
Scy(ky — %) — Zez (X —%3) = 0
; @)
GMy_13n_1 + Gkp_1 (Xn_p — Xn_1) — Gl (xp_q — xp)
Geno1(p—p — &n_1) = GCr(p_q — %,) = 0
GMp¥n + Ghn (-1 — xn) + Gep (k-1 — %) =0
Also, these equations can be expressed in matrix
form as:

[M]% + [c]¥ + [K]¥ = F (5)
where [M] are the components of the mass matrix
depending on the values of the stalk, branch or fruit
tree in each level (kg), [c] are the elements of the
equivalent viscous damping matrix in each level
(N.s/m), [K] are the components of stiffness matrix
depending on the values of the apparent spring
constant of the stalk, branch or fruit tree in each
level (N/m), w is the shaking frequency or
excitation frequency (rad/s), tis the time (s) and
the vectors X, % and ¥ indicate, respectively, the
vectors of displacements (m), velocities (m/s), and
accelerations (m/s?) of the stalk, branch or fruit
tree in each level, and F represents the vector of
force acting on the trunk mass (N). The components
of the mass, viscose damping, stiffness, force
matrices as follow:

M, 0 0 . 0 0
0 SM, 0 .. 0 0
0 0 ZM; .. 0 0
M=, - (6)
0 0 0 GM,_, 0
lo o o o oMl
And
c; + Sc, =Sc, 0 0 0 -
—Sc, Scy, +Zcy —Zcy 0 0
_ 0 —Zcs Zces+Ye, .. 0 0 (7)
0 0 0 Gep_q + Gec, —Gey
0 0 0 —Gcy, Gy, -
And
K
ky + Sk, —Sk, 0 0 0
—Sky,  Sky+Zks  —Zkg 0 0
_ 0 —Zks Zks + Yk, .. 0 0 (8)
0 0 0 . Gkp_q + Gk, —Gk,
0 0 0 —Gky, Gk,
Where S, Z, Y, ... and G are numbers of the

branches in each level, respectively. The applied
force in this study is frequency proportional
actuation:

F=[mrw? 0 0 0 .. 0 0 0 0 (9
Which m is the unbalanced mass (kg), r is the distance
from the axis to the center of mass (m) in the inertia
shaker with rotating eccentric weights mechanism.

Eigen Frequency Analysis

In order to determine the natural frequencies and the
normal modes, the eigenvalue problem corresponding to
the vibration of the undamped system is solved. The free
vibration of the undamped system can be governed by the
following (10):

[M]x + [k]% = O (10)
The solution of (10) is assumed to be harmonic as:
%(t) = Asin(wt + ¢) (11)
So that:
x(t) = —w?4 sin(wt + ¢) (12)

Where 4 is the vector of amplitudes of the Z(t), ¢
is the phase angle. Substituting (11) and (12) into
(10) gives:

[[k]- w?[m]]4=0 (13)

Equation (13) represents a system of n algebraic
homogeneous equations with unknown coefficients
Ay, A,, ... and A, (amplitudes of x4,x%,, ... andxy, .)
For a nontrivial solution of the vector of

coefficientsK, the determinant of the coefficient
matrix must be equal to zero:

I[K] - [M]w?| =0 (14)

Equation (14) is the characteristic equation or
frequency equation. The roots of this equation give
the n Eigenvalues (0%, 03,...,0%). The positive
square roots of the Eigenvalues yield the natural
frequencies of the system (w4, wo,..., Wy,).

Frequency Response of the System

In order to determine frequency response of the each
level’s component with  Multiple-degree-of-
freedom (MDOF) in considered fractal tree, matrix
methods are indispensable. For solution of the (5) is

assumed to be harmonic as (¥(t) = A sin(wt + ¢))
and substituting this equation into it and rearranging
takes the following form:

KT (9)

= [~w?[M] + iw[c] + [
Equatlon (15) denotes displacement amplitude of
each level’s components in fractal tree system when
it is harvested by inertia shaker with rotating
eccentric weights mechanism.

Results and discussion

The olive tree (with different fractal structures)
vibrated by shaker (rotating eccentric weights type)
is modeled with an equivalent Multiple-degree-of-
freedom (MDOF) mass-spring system. The
displacement amplitude of the fruit (D.A.F) is
calculated for different values of the shaker
excitation frequency. Then the D.A.F is calculated
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for olive trees with three different bifurcation ratio
(Ry,=1/4,R, =1/3,R, =1/2) and pruning
ratios (R, = 0.25,0.5,0.75). In the sixth and
seventh levels, the fruit is modeled with a two
degree of freedom mass-spring system (in which the
stem and fruit are modeled with a simple
pendulum). So the considered DOF is one number
more than the age the tree. The amplitude and area
under the frequency response curve represent the
transferred energy in the oscillations. The greatest
energy occurs at the fundamental or first mode
(James, 2010). The frequency response of the fruit
for three fractal tree models with different pruning
ratios is depicted in Figs 4 (a-c). Fig 4(a) shows the
frequency response of the fruit for the binary,
ternary and quadruple fractal models with short
pruning ratio (R, = 0.25). As shown from this
figure, these models have exactly the same quantity
of the maximum D.A.F. In addition, it can be seen
from Fig 4b that the maximum D.A.F of the
guadruple fractal tree is more than other models.
Also in Fig 4c, the maximum D.A.F belongs to
binary model. So it can be said that transferred force
into the fruit will have significant increase by tall
pruning operation in binary model.

Fig 4. D.A.F of the fractal tree with the same
pruning ratio and different bifurcation ratios, (a):
Rr=0.25, (b): Rr=0.5 and (c): Rr=0.75

Fig 5 shows the D.A.F in different fractal tree
models with a variety of the length-order ratios
(pruning ratios) and constant bifurcation ratio. As
shown in Figs 5(a-b) by increasing quantity of
pruning ratio, D.A.F of the binary and ternary
models (R, = 1/2,1/3) is increased respectively.
But at the quadruple model (R, = 1/4) as shown in
Fig 5c, the maximum and minimum of the D.A.F
are occurred in pruning ratios (R, = 0.5,0.75)
respectively. Also, the results of the Figs 4, 5 show

that in two states (fractal tree with the same pruning
ratio-different bifurcation ratios and fractal tree with
different pruning ratios-the same bifurcation ratios),
the D.A.F of both models have an equal in quantity
of the transferred force.

©
Fig 5. D.A.F of the fractal tree with different the
pruning ratios and the same bifurcation ratios, (a):
binary fractal (Ro = 1/2), (b): ternary fractal (R =
1/3) and (c): quadruple fractal (Ry = 1/4)

Fig. 6 shows frequency response of the ternary-
binary fractal tree model with different pruning
ratios and the bifurcation ratios. It can be figured out
from Fig. 6 that the maximum of the D.A.F is gotten
by applying tall pruning ratio (R, =0.75) in
ternary-binary model. On the other hand, increasing
the number of the binary branches is affected
sharply on the maximum D.A.F of this model.

(©)

Fig 6. D.A.F of the compound fractal model
(ternary-binary fractal tree) with different the
pruning ratios and the bifurcation ratios (Rb=1/2,
1/3), (a): sample 1, (b): sample 2 and (c): sample 3
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The frequency response of the fruit for compound
fractal models (quadruple-ternary-binary fractal
trees) with different pruning and the bifurcation
ratios in six cases is depicted in Figs 7 (a-f). Fig. 7a
shows that the fruit of this fractal model (sample 1)
is received significant transferred force by applying
specific pruning ratio 0.5. Therefore, it is true to say
that quadruple branches have main role into transfer
the maximum shaker force to the fruit in this model.
As it is shown in Fig 7 (b-c), by increasing the
number of the ternary branches, dominant fractal is
ternary type in this model so that transferred force
to the fruit is received significant by applying
pruning ratio 0.75 to other pruning ratios. The
results of Fig 7 (d-f) demonstrate that the maximum
of the D.A.F is function of the binary branches in
these models. As shown in these Figs, specific
pruning ratio (R, = 0.75) has global maximum
D.A.F to other applied pruning ratios.

ampli Ethe f
i
“-'--.:.;_._3
gf_"___p,—;...-‘-
i

() )

Fig 7. D.A.F of the compound fractal model
(quadruple-ternary- binary fractal tree) with
different the pruning ratios and the bifurcation
ratios (Rv=1/4, 1/3, 1/2), (a): sample 1, (b): sample 2,
(c): sample 3, (d): sample 4, (e): sample 5 and (f):
sample 6

4. Conclusions

A wide variety of fractal tree models have been
developed for modeling the dynamic behavior of the
vibrant olive tree with different structures. The

obtained results of the mathematical modeling (with
the same pruning ratio and different bifurcation
ratios) have shown that by applying short pruning
ratio (R, = 0.25) to the three fractal models, fruit’s
vibration amplitude and value of the force
transferred to it could be equaled in each three
models. On the other hand, bifurcation ratio’s role
had not significant effect on force transferred to
fruits whereas pruning ratio has a major effect on
force transferred to fruits in harvest process.

It has been observed from results that the
maximum amplitude of the fruit, selected tall (R, =
0.75) and average (R, = 0.5) pruning ratio could
increase the transferred force rate to fruit in binary,
ternary and quadruple tree models, respectively. In
addition, the findings of the figures (the fractal tree
with the different pruning ratios and the same
bifurcation ratios) have demonstrated that fruit’s
vibration amplitude or D.A.F and value of the force
transferred to it could be increased by applying the
tall pruning ratio (R,, = 0.75) in binary and ternary
tree models and the appropriate D.A.F of the
guadruple model is affected by average pruning
ratio (R, = 0.5). In general, in order to have an
effective mechanical harvest by trunk shaker, the
proper pruning ratio should be selected considering

) type of the fractal tree models to obtain maximum

fruit’s vibration amplitude and the value of the force
transferred to it. The results of the mathematical
modeling for compound fractal trees have
confirmed that the maximum of the D.A.F is
function of the type bifurcation ratios of branches in
the final levels. The binary and ternary branch types
in final levels have transferred the maximum value
of the force transferred rate to fruit, therefore,
transferred force’s dissipation will decrease to fruit
which can increase the stress in the pedicle and the
stem bottom and fruit removal of the trees will raise
in shaking process.
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