تعداد نشریات | 41 |
تعداد شمارهها | 1,116 |
تعداد مقالات | 13,682 |
تعداد مشاهده مقاله | 48,572,849 |
تعداد دریافت فایل اصل مقاله | 12,337,099 |
Spectral collocation method based on special functions for solving nonlinear high-order pantograph equations | ||
Computational Methods for Differential Equations | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 13 دی 1401 اصل مقاله (1.57 MB) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22034/cmde.2022.51962.2170 | ||
نویسندگان | ||
Sagithya Thirumalai ![]() ![]() | ||
1Department of Mathematics, PSG Institute of Technology and Applied research, Coimbatore, India. | ||
2Department of Mathematics, Pondicherry University, Puducherry, India. | ||
3Department of Mathematics, Faculty of Science, Akdeniz University, Antalya, Turkey. | ||
چکیده | ||
In this paper, a spectral collocation method for solving nonlinear pantograph type delay differential equations is presented. The basis functions used for the spectral analysis are based on Chebyshev, Legendre and Jacobi polynomials. By using the collocation points and operations matrices of required functions such as derivative functions and delays of unknown functions, the method transforms the problem into a system of nonlinear algebraic equations. The solutions of this nonlinear system determine the coefficients of assumed solution. The method is explained by numerical examples and the results are compared with the available methods in literature. It is seen from the applications that our method gives efficient results than that of the reported methods. | ||
کلیدواژهها | ||
Nonlinear Pantograph Equations؛ collocation method؛ spectral method | ||
آمار تعداد مشاهده مقاله: 63 تعداد دریافت فایل اصل مقاله: 91 |