تعداد نشریات | 43 |
تعداد شمارهها | 1,269 |
تعداد مقالات | 15,640 |
تعداد مشاهده مقاله | 51,701,342 |
تعداد دریافت فایل اصل مقاله | 14,580,618 |
بررسی شبکه آبراهههای حوضه آبریز رامهرمز با استفاده از مدل توکوناگا و بعدفرکتال همبستگی | ||
هیدروژئومورفولوژی | ||
دوره 9، شماره 33، دی 1401، صفحه 20-1 اصل مقاله (1.46 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/hyd.2022.49711.1618 | ||
نویسندگان | ||
مهشید معاوی1؛ هیوا علمیزاده* 2 | ||
1فارغ التحصیل کارشناسی ارشد ژئومورفولوژی | ||
2عضو هیات علمی دانشگاه علوم و فنون دریای خرمشهر | ||
چکیده | ||
در دیدگاه رفتارهای فرکتالی، ویژگی همانندسازی در طول زمان الگوهایی را در بستر حوضه بهوجود میآورند که بنا بر ویژگیهای زایشی و چگونگی تحولات، عملکرد منحصر بهفردی را در طی بلوغ یک حوضه آبریز به نمایش میگذارند. بههمین دلیل در این پژوهش با هدف بررسی انشعاب شبکههای آبراههای حوضه رامهرمز از مدل توکوناگا و بعدفرکتال همبستگی استفاده شده است. رودخانه رامهرمز از زیرحوضههای حوضه آبریز جراحی واقع در جنوب غربی کشور میباشد که از 50 کیلومتری جنوب شرق ایذه سرچشمه گرفته و به سوی جنوب غرب سرازیر میگردد. در این پژوهش شبکههای رودخانه با استفاده از نرمافزار Arc GIS استخراج شده و سپس دادههای ورودی برای محاسبه عدد فرکتالی دو بعدی به کمک تابع همبستگی وارد نرمافزار گردید. در این راستا ابتدا حوضه رامهرمز را به دو بخش شرقی و غربی تقسیم نموده و در ادامه با استفاده از روش توکوناگا، شبکه نامنظم و منحنی رودخانه رامهرمز به شکل منظم، هندسی و درختی منتناظر ترسیم شده است. با توجه به طول شاخهها، بعد فرکتالی برای هر دو بخش حوضه رامهرمز محاسبه گردید. بعد فرکتالی همبستگی حوضه رامهرمز و بخشهای شرقی و غربی آن بین (42/1 تا 68/1) با ضریب همبستگی بالا برآورد گردیده است. بعد فرکتال محاسبه شده معرف نسبت انشعاب متوسط و مدت زمان اندک برای رسیدن به جریان دائمی است که بیانگر رفتار آشوبناکی نسبتاً بالای حوضه و بخشهای آن میباشد. | ||
کلیدواژهها | ||
بعد فرکتال همبستگی؛ مدل توکوناگا؛ شبکه های آبراهه ای؛ حوضه رامهرمز؛ جنوب غرب ایران | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Anwar, N., Tunas, I., Lasminto, U., (2019). A synthetic unit hydrograph model based on fractal characteristics of watersheds, International Journal of River Basin Management, 17:4, 465-477. Ariza,V. A., Hornero, J., Gutiérrez, F., Rave, E., (2013). Multi-fractal analysisapplied to the étude, of DEM-based stream, Geomorphology, 197:85-95. Asghari Saraskanroud S, Zeinali B. (2016). Investigation of meandering pattern Germi Chay River in Azarbayjan Sharghi province by geomorphology and Fractal methods. GeoRes,30 (4) :64-79. Bartolini, C., (2012). Is the morphogenetic role of tectonicsoveremphasized at times? Boll. Geof. Teor. Appl. 53(4), pp.459–470. Buzsaki, G., Logothetis, N., Singer, W., (2013). Scaling brain size, keeping time: evolutionary preservation of brain rhythms. Neuron, (2013), 80:751–64. Carke, J., Aher, P.D., Adinarayana, A., Gorantivar, J., (2015). Prioritization of Watersheds Using Multicriteria Evalution Through Fuzzy Analytical Hierarchy Process. Agricultural Engineering Int: CIGR Journal, 15(1). pp. 11-18. Chavan, S.R., & Srinivas, V.V. (2015). Effect of DEM source on equivalent Horton–Strahler ratio based GIUH for catchments in two Indian river basins. Journal of Hydrology, 528, 463–489. Donadio, C., Magdaleno, F., Mazzarella, A., Kondolf, G. M., (2014). Fractal dimension of the hydrographic pattern of three large rivers in the Mediterranean morphoclimatic System: geomorphologic interpretation of Russian (USA), Ebro (Spain) and Volturno (Italy) Fluvial Geometry, Pure and Applied Geophysics, 172, pp. 1975-1984. Durighetto, N., Vingiani, F., Bertassello, L. E., Camporese, M., & Botter, G. (2020). Intraseasonal Drainage Network Dynamics in a Headwater Catchment of the Italian Alps. Water Resources Research, 56(4).doi:10.1029/2019wr025563. Elmizadeh, H., & Abasi, A. (2018). Order_matrix Analysis of Micro Drainage Network Emerged in Dried Bed of Urmia Lake. Quantitative Geomorphological Research, 6(4), 147-159. Elmizadeh, H., MahPeykar, O., Saadatmand, M., (2015). Investigation of Fractal Theory in River Geomorphology: A Case Study of Zarrineh River. Quantitative Geomorphological Research, 3(2), 130-141. Fattahi, M., Kamyab, S. (2019). Compliance Process of the Geo-morphological indices of the watershed with the Multi-fractal Properties of the River Network. Iran-Water Resources Research, 14(5), 339-451. Fernandez-Martínez, M., Sanchez-Granero, M.A. (2015). How to calculate the Hausdorff dimension using fractal structures, Applied Mathematics and Computation, 264: 116–131. Gale, S. J., Ibrahim, Z. Z., Lal, J., & Sicinilawa, U. B. T. (2019). Downstream fining in a megaclast-dominated fluvial system: The Sabeto River of western Viti Levu, Fiji. Geomorphology, 330, 151–162. doi:10.1016/j.geomorph.2019.01.009. Golekar, R.B., Baride, M.V., Patil S.N., (2013). Morphometric analysis and hydrogeological implication: Anjaniand Jhiri river basin Maharashtra, India, Arch Appl Sci Res, 5(2): 33-41. Gupta, V. K., and Mesa, O. J., (2014). Horton laws for hydraulic–geometric variables and their scaling exponents in self-similar Tokunaga river networks, Nonlinear Processes in Geophysics, 21: 1007-1025. Horton, R.E., (1945). Erosional development of streams and their drainage basins: hydrographical approach to quantitative morphology. In: Christofoletti, A. (Ed.), Geomorfologı´a Fluvial. O Canal Fluvial, vol. 1. Ed. Blucher, Sao Paulo, Brazil, pp. 312 – 32. Joshi, L. M., & Kotlia, B. S. (2018). Tectonic footprints and landscape evaluation along Kulur River valley, Kumaun Lesser Himalaya, India. Journal of Asian Earth Sciences, 162, 121–136. doi:10.1016/j.jseaes.2018.04.023. Karam, A., Saberi, M., (2014). Calculation of fractal dimension in drainage basins and its relationship with some geomorphological characteristics of the basin (Case study: North Tehran catchments), Quantitative Geomorphological Research, 4(3), 153-167. Khosravi, A., Sepehr, A., Abdollahzadeh, Z. (2017). Fractal Behavior and Its Relationship with Hydromorphometric Characteristics over Catchments of Binaloud Northern Hillslopes. Hydrogeomorphology, 3(9), 1-20. Kovchegov, Y., and Zaliapin, I., (2018). Tokunaga self-similarity arises naturally from time invariance,Chaos: An Interdisciplinary, Journal of Nonlinear Science .Volume 28, Issue 4. 10.1063/1.5029937. Kovchegov, Y., and Zaliapin, I., Foufoula-Georgiou, E. (2021). Critical Tokunaga model for river networks, Physical Review Journals. E 105, 014301.Utomo, K. S., Sutopo, Y., & Adi, M. H. (2019). Drainage Network System of Sekaran Village, Gunungpati District, Semarang City. Jurnal Teknik Sipil Dan Perencanaan, 21(1), 39–45. doi:10.15294/jtsp.v21i1.18301. Liao, Z., Gu, X., Xie, J., Wang, X., & Chen, J. (2019). An integrated assessment of drainage system reconstruction based on a drainage network model. Environmental Science and Pollution Research, 26(26), 563–576.doi:10.1007/s11356-019-05280-1. Mcconnell, M. and Gupta, M. (2008). A proof of the Horton law of stream numbers for the Tokunaga model of river networks, World Scientific Publishing Company, Vol. 16, No. 3, 227–233 Meixner, T., Williams, Z.C., Pelletier, J.D., (2019). Self-affine fractal spatial and temporal variability of the San Pedro River, southern Arizona, American Geophysical Union. Journal of Geophysical Research: Earth Surface, 124, (6), p. 1540-1558 Méndez-Quintas, E., Santonja, M., Pérez-González, A., Arnold, L. J., Demuro, M., & Duval, M. (2020). A multidisciplinary overview of the lower Miño River terrace system (NW Iberian Peninsula): A response to comments by Viveen et al. Quaternary International, 565, 129–135. doi:10.1016/j.quaint.2020.09.037. Moavi, M., & elmizadeh, H. (2020). Analysis of Form and Patterns of Ramhormoz Basin Drainage Network Using Order Matrix Model. Quantitative Geomorphological Research, 9(1), 172-183. doi: 10.22034/gmpj.2020.109541 Newman, W.I., Turcotte, D.L., Gabrielov, A.M., (1997). Fractal Trees with Side Veltri, M., Veltri, P., Maiolo, M., (1996), On the fractal description of natural channelnetworks, Journal of Hydrology, 187: 137-144. Panahi, R., moshashaie, M., moshashaee, M. (2022). Gorphological Analysis of the Mereg Mahidasht River. Hydrogeomorphology, 9(32), 62-43. doi: 10.22034/hyd.2022.49931.1622 Parsons, M., & Thoms, M. C. (2018). From academic to applied: Operationalising resilience in river systems. Geomorphology, 305, 242–251. doi:10.1016/j.geomorph.2017.08.040. Parvaneh, Z., & elmizadeh, H. (2022). Analysis of geometric order of drainage networks using Tokunaga model and capacity dimension (Case study: Bashar river basin). Quantitative Geomorphological Research, 11(1), 171-182. doi: 10.22034/gmpj.2022.334599.1339 Peckham, S.D., (1995). New Results for Self-Similar Trees with Applications to River Networks, Water Resources Research.31, 1023. Rahmati, O., Tahmasebipour, N., Pourghasemi, H. (2015). Sub-watershed flooding prioritization using morphometric and correlation analysis (Case study: Golestan Watershed). Iranian journal of Ecohydrology, 2(2), 151-161. doi: 10.22059/ije.2015.56241. Rahmizadegan, M., Merrikhpour, M. (2016). Determination of Basin’s Physiographic Characteristics Derived from the ASTER Digital Elevation Model (Case Study: The KabudRahang Plain, Hamedan, IRAN). Water Resources Engineering, 9(29), 103-124. Rezaei, H., Jabbari Gharabagh, S. (2017). Noise Reduction Effect on Chaotic Analysis of Nazluchay River Flow. Water and Soil Science, 27(3), 239-250. Rozo, G. A., Nogueira, C., Soto, C., (2014). Remote sensing-based analysis of the planform changes in the Upper Amazon River over, Journal of Arid Environments, period 19, pp425-439 Shayan, S., Maghsoudi, M., Gol Alizade, M., Sharifi Kiya, M., Norbakhsh, S. (2016). Spatial analysis of aeolian landforms by fractal theory (Case study: Ardestan Rig). Physical Geography Research Quarterly, 48(2), 231-245. doi: 10.22059/jphgr.2016.59365. Soltani, S., ghohroudi tali, M., sadoogh, S. (2019). Application of remote sensing and fractal mathematical model in studying the behavior and variations of geomorphologic landforms of Aras river. Quantitative Geomorphological Research, 7(4), 73-92. Sowpamilk, M., (2014). jaira., implication of fractal dimension on properties of rivers and river basins, Vol. 5, Issue12, December(2014), pp. 155-164. Tarboton, D.G. (1996). Fractal river networks, Horton's laws and Tokunaga cyclicity, Journal of Hydrology, 187, 105-117. Tunas, I., Anwar, N ., Lasminto, U., (2016). Fractal Characteristic Analysis of Watershed as Variable of Synthetic Unit Hydrograph Model, The Open Civil Engineering Journal, 10(1):706-718 · October 2016 with 168 Reads. Turcotte, D.L., (2007). Fractal and chaos in geology and geophysics, Cambridge University Press, Cambridge, pp.1- 398. Yamani, M., Alaei Taleghani., M, Shahbazi, Sabrieh. (2012). Morphotectonic and its impact on the changes in bed and pattern. Journal of Geography and Regional Development, 9(2). Yan, Y., Tang, J., & Pilesjö, P. (2018). A combined algorithm for automated drainage network extraction from digital elevation models. Hydrological Processes, 32(10), 1322–1333. doi:10.1002/hyp.11479. Yang, H., and Shi, C.h., (2017). The Fractal Characteristics of Drainage Networks and Erosion Evolution Stagesof Ten Kongduis in the Upper Reaches of the Yellow River, ChinaSource: Journal of Resources and Ecology, 8(2):165-173. Yang, H., Yang, X., Huang, W., Li, A., Hu, Z., Huang, X., & Yang, H. (2020). 10Be and OSL dating of Pleistocene fluvial terraces along the Hongshuiba River: Constraints on tectonic and climatic drivers for fluvial downcutting across the NE Tibetan Plateau margin, China. Geomorphology, 348, 106884. doi:10.1016/j.geomorph.2019.106884. Yu, F., Serena C., Kyungrock, P., Gavan, M.G., Suresh, P., Rao, C., Montanari, A ., Jawitz, JW., (2018). Globally Universal Fractal Pattern of Human Settlements in River Networks. American Geophysical Union. pp:1-20. Zakir Mushfeq, M., Anis Hosseini, Massoud. (2013). Analysis and Prediction of the Kashkan River Flow using Chaos Theory. Journal of Hydraulics, 8(3), 45-61. Zanardo, S., I. Zaliapin, and E. Foufoula-Georgiou (2013). Are American rivers Tokunaga self-similar? New results on fluvial network topology and its climatic dependence, Journal of Geophysical Research Atmospheres 118 (1):166-183. Zhou, Z., Zhihui, N., Lichun, W., Liang, Z., (2017). Fractal research of transverse sections of a long river channel below a dam, Environment Earth Scince, 76:553, pp: 11-1. | ||
آمار تعداد مشاهده مقاله: 277 تعداد دریافت فایل اصل مقاله: 255 |