- [1] Sanger F. Sequences, sequences, and sequences. Annual review of biochemistry; Vol. 57, No. 1, pp. 1-29, 1988.
- [2] Shendure J, Balasubramanian S, Church GM, Gilbert W, Rogers J, Schloss JA, et al. DNA sequencing at 40: past, present and future. Nature; Vol. 550, 7676, pp. 345-353, 2017.
- [3] Wetterstrand KA. DNA sequencing costs: data from the NHGRI Genome Sequencing Program (GSP). 2013.
- [4] Hasnain MJU, Afzal B, Anwar T, Pervez MT, Hussain T. 2. A review on nanopore sequencing technology, its applications and challenges. Pure and Applied Biology (PAB); Vol. 9, No. 1, pp. 154-161, 2020.
- [5] Garalde DR, Snell EA, Jachimowicz D, Sipos B, Lloyd JH, Bruce M, et al. Highly parallel direct RNA sequencing on an array of nanopores. Nature methods; Vol. 15, No. 3, pp. 201-206, 2018.
- [6] Kasianowicz JJ, Brandin E, Branton D, Deamer DW. Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National Academy of Sciences; Vol. 93, No. 24, pp. 13770-13773, 1996.
- [7] Yu Y-s, Lu X, Ding H-m, Ma Y-q. Computational investigation on DNA sequencing using functionalized graphene nanopores. Physical Chemistry Chemical Physics; Vol. 20, No. 14, pp. 9063-9069, 2018.
- [8] Wells DB, Belkin M, Comer J, Aksimentiev A. Assessing graphene nanopores for sequencing DNA. Nano letters; Vol. 12, No. 8, pp. 4117-4123, 2012.
- [9] Bayley H. Piercing insights. Nature; Vol. 459, No. 7247, pp. 651-652, 2009.
- Mohammadi MM, Bavi O. DNA sequencing: an overview of solid-state and biological nanopore-based methods. Biophysical Reviews; Vol. 14, No. 1, pp. 99-110, 2022.
- Yuan Z, Liu Y, Dai M, Yi X, Wang C. Controlling DNA translocation through solid-state nanopores. Nanoscale research letters; Vol. 15, No. 1, pp. 1-9, 2020.
- Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q. Opportunities and challenges in long-read sequencing data analysis. Genome biology; Vol. 21, No. 1, pp. 1-16, 2020.
- Feng Z, Clemente JC, Wong B, Schadt EE. Detecting and phasing minor single-nucleotide variants from long-read sequencing data. Nature communications; Vol. 12, No. 1, pp. 1-13, 2021.
- Bobrovskikh AV, Doroshkov A, Mazzoleni S, Carteni F, Giannino F, Zubairova U. A sight on single-cell transcriptomics in plants through the prism of cell-based computational modeling approaches: benefits and challenges for data analysis. Frontiers in Genetics; Vol. 12, No., pp. 771, 2021.
- Henry MB, Tumbapo M, Tayo BO. Identification of DNA bases using nanopores created in finite-size nanoribbons from graphene, phosphorene, and silicene. AIP Advances; Vol. 11, No. 3, pp. 35-47, 2021.
- Graf M, Lihter M, Altus D, Marion S, Radenovic A. Transverse detection of DNA using a MoS2 nanopore. Nano letters; Vol. 19, No. 12, pp. 9075-9083, 2019.
- Heerema SJ, Dekker C. Graphene nanodevices for DNA sequencing. Nature nanotechnology; Vol. 11, 2, pp. 127-136, 2016.
- Jose D, Datta A. Structures and chemical properties of silicene: unlike graphene. Accounts of chemical research; Vol. 47, No. 2, pp. 593-602, 2014.
- Zereshki P, Wei Y, Ceballos F, Bellus MZ, Lane SD, Pan S, et al. Photocarrier dynamics in monolayer phosphorene and bulk black phosphorus. Nanoscale; Vol. 10, No. 24, pp. 11307-11313, 2018.
- Chen Y, Ren R, Pu H, Chang J, Mao S, Chen J. Field-effect transistor biosensors with two-dimensional black phosphorus nanosheets. Biosensors and Bioelectronics; Vol. 89, No., pp. 505-510, 2017.
- Satarifard V, Foroutan M, Ejtehadi MR. How effective is graphene nanopore geometry on DNA sequencing? arXiv preprint arXiv:150102169; Vol., No., pp., 2015.
|