- [1] T. Abdeljawad, R. P. Agarwal, E. Karapnar, and P. S. Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space, Symmetry, 11 (2019), 686-704.
- [2] M. A. Alzhrani, H. O. Bakodah, and M. Al-mazmumy, A 3/8 Simpson’s Numerical Scheme for the Classes of Volterra Integral Equations of First Kind, Nonlinear Anal. Differ. Equ., 1 (2019), 99-113.
- [3] K. E. Atkinson and J. Flores, The collocation method for nonlinear integral equations, IMA J. Numer. Anal., 13 (1993), 195-213.
- [4] E. Babolian and L. M. Delves, An augmented Galerkin method for first kind Fredholm equations, IMA J. Appl. Math., 24 (1979), 157-174.
- [5] E. Babolian, K. Maleknejad, M. Mordad, and B. Rahimi, A numerical method for solving Fredholm-Volterra integral equations in two-dimensional spaces using block pulse functions and an operational matrix, J. Comput. Appl. Math., 235 (2011), 39653971.
- [6] E. Babolian and Z. Masouri, Direct method to solve Volterra integral equation of the first kind using operational matrix with block-pulse functions, J. Comput. Appl. Math., 220 (2008), 5157.
- [7] E. Babolian and A. S. Shamloo, Numerical solution of Volterra integral and integro-differential equations of convolution type by using operational matrices of piecewise constant orthogonal functions, J. Comput. Appl. Math., 214 (2008), 495508.
- [8] P. Baratella, A Nystrom interpolant for some weakly singular linear Volterra integral equations, Comput. Appl. Math., 231 (2009), 725734.
- [9] M. A. Bartoshevich, On one heat conduction problem, Inz-Fiz Zh, 28 (1975), 340345.
- [10] J. Biazar, E. Babolian, and R. Islam, Solution of a system of Volterra integral equations of the first kind by Adomian method, Appl. Math. Comput., 139 (2003), 249-258.
- [11] J. Biazar, M. Eslami, and H. Aminikhah, Application of homotopy perturbation method for systems of Volterra integral equations of the first kind, Chaos Solitons Fractals, 42 (2009), 3020-3026.
- [12] L. K. Bieniasz, Modelling electroanalytical experiments by the integral equation method, Berlin Heidelberg, Springer, 2015.
- [13] H. Brunner, Collocation methods for Volterra integral and related functional differential equations, vol. 15 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2004.
- [14] C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang, Spectral Methods in Fluid Dynamics, Springer, Berlin, 1988.
- [15] L. M. Delves and J. Mohamed, Computational Methods for Integral Equations, Cambridge University Press, Cambridge 1988.
- [16] H. J. Ding, H. M. Wang, and W. Q. Chen, Analytical solution for the electrostatic dynamics of a nonhomogeneous spherically isotropic piezoelectric hollow sphere, Arch. Appl. Mech., 73 (2003), 4962.
- [17] G. Gripenberg, S.-O. Londen, and O. Staffans, Volterra integral and functional equations, vol. 34 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1990.
- [18] R. C. Guru Sekar and K. Murugesan, STWS approach for Hammerstein system of nonlinear Volterra integral equations of the second kind, Int. J. Comput. Math., 94 (2017), 18671878.
- [19] M. H. Heydari, Chebyshev cardinal wavelets for nonlinear variable-order fractional quadratic integral equations, Appl. Numer. Math. 144 (2019), 190-203.
- [20] M. H. Heydari, M. R. Mahmoudi, A. Shakiba, and Z. Avazzadeh, Chebyshev cardinal wavelets and their application in solving nonlinear stochastic differential equations with fractional Brownian motion, Commun. Nonlinear Sci. Numer. Simul. 64 (2018), 98-121.
- [21] M. H. Heydari and M. Razzaghi, Extended Chebyshev cardinal wavelets for nonlinear fractional delay optimal control problems, Internat. J. Syst. Sci. 53 (2022), 190-203.
- [22] M. H. Heydari, R. Tavakoli, and M. Razzaghi, Application of the extended Chebyshev cardinal wavelets in solving fractional optimal control problems with ABC fractional derivative, Internat. J. Syst. Sci. 64 (2022), 98-121.
- [23] N. Khan, M. S. Hashmi, S. Iqbal, and T. Mahmood, Optimal homotopy asymptotic method for solving Volterra integral equation of first kind, Alex. Eng. J., 53 (2014), 751755.
- [24] S. Kumar, Modifications of Linz methods for nonlinear second kind Volterra integral equations with singular or periodic kernels, Journal of Mathematical and Physical Sciences, 26 (1992), 591-597.
- [25] P. K. Lamm, Approximation of ill-posed Volterra problems via predictor-corrector regularization methods, SIAM J. Appl. Math., 56 (1996), 524-541.
- [26] P. K. Lamm, Solution of ill-posed Volterra equations via variable-smoothing Tikhonov regularization, In Inverse Problems in Geophysical Applications, Philadelphia, 1997.
- [27] P. K. Lamm and L. Eldn, Numerical solution of first kind Volterra equations by sequential Tikhonov regularization, SIAM J. Numer. Anal., 34 (1997), 1432-1450.
- [28] Y. Ma, J. Huang, C. Wang, and H. Li, Sinc Nystro¨m method for a class of nonlinear Volterra integral equations of the first kind. Adv. Differ. Equ., 151 (2016), 1-15.
- [29] K. Maleknejad and R. Dehbozorgi, Adaptive numerical approach based upon Chebyshev operational vector for nonlinear Volterra integral equations and its convergence analysis, J. Comput. Appl. Math. 344 (2018), 356366.
- [30] K. Maleknejad, E. Hashemizadeh, and R. Ezzati, A new approach to the numerical solution of Volterra integral equations by using Bernsteins approximation, Commun. Nonlin. Sci. Numer. Simulat., 16 (2011), 647655.
- [31] K. Maleknejad, R. Mollapourasl, and M. Alizadeh, Numerical solution of Volterra type integral equation of the first kind with wavelet basis, Appl. Math. Comput., 194 (2007), 400-405.
- [32] K. Maleknejad, R. Mollapourasl, and K. Nouri, Convergence of numerical solution of the Fredholm integral equation of the first kind with degenerate kernel, Appl. Math. Comput. 181 (2006), 1000-1007.
- [33] K. Maleknejad, K. Nouri, and L. Torkzadeh, Comparison projection method with Adomian’s decomposition method for solving system of integral equations, Bull. Malays. Math. Sci. Soc. 34 (2011), 379388.
- [34] K. Maleknejad and B. Rahimi, Modification of block pulse functions and their application to solve numerically Volterra integral equation of the first kind, Commun. Nonlin. Sci. Numer. Simulat., 16 (2011), 24692477.
- [35] K. Maleknejad, S. Sohrabi, and Y. Rostami, Numerical solution of nonlinear Volterra integral equations of the second kind by using Chebyshev polynomials, J. Appl. Math. Comput., 188 (2007), 123128.
- [36] Z. Masouri, E. Babolian, and S. Hatamzadeh-Varmazyar, An expansion-iterative method for numerically solving Volterra integral equation of the first kind, Comput. Math. Appl., 59 (2010), 14911499.
- [37] F. Mirzaee, Numerical solution of optimal control problem of the non-linear Volterra integral equations via gen- eralized hat functions, IMA J. Math. Control Inf., 34 (2017), 889-904.
- [38] F. Mirzaee, Numerical solution of nonlinear Fredholm-Volterra integral equations via Bell polynomials, Comput. Methods Differ. Equ., 5 (2017), 88-102.
- [39] F. Mirzaee and E. Hadadiyan, Using operational matrix for solving nonlinear class of mixed Volterra-Fredholm integral equations, Math. Methods Appl. Sci., 40 (2016), 3433-3444.
- [40] F. Mirzaee and S. F. Hoseini, Hybrid functions of Bernstein polynomials and block-pulse functions for solving optimal control of the nonlinear Volterra integral equations, Indag. Math., 27 (2016), 835-849.
- [41] F. Mirzaee and N. Samadyar, Explicit representation of orthonormal Bernoulli polynomials and its application for solving Volterra-Fredholm-Hammerstein integral equations, SeMA Journal, 77 (2020), 8196.
- [42] F. Mirzaee and N. Samadyar, Convergence of 2D-orthonormal Bernstein collocation method for solving 2D-mixed VolterraFredholm integral equations, Trans. A. Razmadze Math. Inst., 172 (2018), 631-64.
- [43] M. Mohamadi, E. Babolian, and S. A. Yousefi, A Solution For Volterra Integral Equations of the First Kind Based on Bernstein Polynomials, Int. J. Industrial Mathematics, 10 (2018), 1-9.
- [44] K. Nedaiasl, R. Dehbozorghi, and K. Maleknejad, hp-version collocation method for a class of nonlinear Volterra integral equations of the first kind, Appl. Numer. Math., 150 (2020), 452-477.
- [45] N. Negarchi and K. Nouri, A new direct method for solving optimal control problem of nonlinear VolterraFredholm integral equation via the MntzLegendre polynomials, Bull. Iran. Math. Soc., 45 (2019), 917-934.
- [46] N. Negarchi and K. Nouri, Numerical solution of VolterraFredholm integral equations using the collocation method based on a special form of the MntzLegendre polynomials, J. Comput. Appl. Math., 344 (2018), 15-24.
- [47] S. K. Panda, A. Tassaddiq, and R. P. Agarwal, A new approach to the solution of nonlinear integral equations via various FBe -contractions, Symmetry, 11 (2019), 206-226.
- [48] B. Salehi, K. Nouri, and L. Torkzadeh, An approximate method for solving optimal control problems with Chebyshev cardinal wavelets, Iranian Journal of Operations Research, 12 (2021), 20-33.
- [49] I. Singh and S. Kumar, Haar wavelet method for some nonlinear Volterra integral equations of the first kind, J. Comput. Appl. Math., 292 (2016), 541552.
- [50] A. N. Tikhonov and V. Y. Arsenin, Solutions of ill-posed problems, Winston, Washington DC, 1977.
- [51] S. A. Yousefi, Numerical solution of Abels integral equation by using Legendre wavelets, Appl. Math. Comput., 175 (2006), 574580.
- [52] T. Zhang and H. Liang, Multistep collocation approximations to solutions of first-kind Volterra integral equations, Appl. Numer. Math., 130 (2018), 171183.
|