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Abstract - \

In this paper, we propose an explicit split-step truncated Milstein method for stochastic differential equations
(SDEs) with commutative noise. We discuss the mean-square convergence properties of the new method for
numerical solutions of a class of highly nonlinear SDEs in a finite time interval. As a result, we show that the
strong convergence rate of the new method can be arbitrarily close to one under some additional conditions.
Finally, we use an illustrative example to highlight the advantages of our new findings in terms of both stability
and accuracy compared to the results in Guo et al. (2018).
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1. INTRODUCTION

Stochastic differential equations are the subject of numerous investigations by scientists [15, 20, 23, 25]. The interest
in these equations arises mainly from their applications to many models in physics, economics, chemistry, biology, etc.
[1, 5, 7, 15, 31]. However, for the majority of nonlinear SDEs, exact solutions are not known. Therefore, numerical
methods become important tools for computing approximate solutions for SDEs [15]. Researchers have proposed
several numerical methods to solve such equations and have well studied the convergence properties of these methods
under the classical global Lipschitz condition (see, e.g., [3, 4, 6, 10, 19, 24, 26, 27]). However, in many applications,
the global Lipschitz and linear growth conditions are perturbed, so most of the proposed methods, such as the Euler-
Maruyama (EM) and Milstein methods, face violated convergence properties [12]. Higham, Mao, and Stuart [14] first
addressed this issue in their influential 2002 paper. They proved that the uniform boundedness of the moments of
both the solution of the SDE and its approximation is sufficient for strong convergence. Subsequently, other numerical
techniques have been proposed to solve the divergence caused by the nonlinearity of the coefficients of the original
system. We can divide these techniques into implicit [5, 14, 21] and modified versions of explicit techniques, and each
of them has its advantages and disadvantages. Implicit methods are characterized by strong convergence and have
extended stability regions, which are well suited for solving stiff problems [2, 11, 29, 30]. However, the implementation
of implicit methods requires the solution of an additional algebraic equation at each time step, which can drastically
increase the computational cost. Therefore, some explicit numerical methods based on changes in drift and diffusion
coefficients have been proposed. These numerical methods include the tamed Euler-Maruyama method [13, 28], the
tamed Milstein method [32], the stopped EM method [18], the truncated EM method [22] and, the partially truncated
Euler-Maruyama method [8]. More recently, Guo et al. [9] introduced a truncated Milstein method for SDEs with
commutative noise. This method was further developed in [16] and, the authors present a new truncated Milstein
method with order one convergence similar to the Milstein method for SDEs with global Lipschitz coefficients. Liao
et al [17] extended the truncated Milstein method to the nonautonomous SDEs with the superlinear state variable
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and the continuous Holder time variable. Moreover, Zhan et al. in [33] proposed a truncated Milstein method with
convergence of order one in the mean square sense for superlinear SDEs modulated by a Markov chain.

Despite the performance of the truncated Milstein method [8, 16] in the convergence order, there is still a drawback.
The use of explicit methods is often expensive because of the step size reduction due to stability issues. Therefore, for
large step sizes, the ability to preserve the qualitative behavior of the solution of the original system is low [2]. In this
paper, we propose as a fully explicit method a split-step truncated Milstein method for solving It6 SDEs. We study
the convergence properties of the new method under the non-global Lipschitz condition. Following the ideas in [§],
we prove that the new method has a strong convergence rate arbitrarily close to one. Finally, we use an illustrative
example to show the efficiency of the proposed method in terms of both stability and accuracy.

The rest of the paper is organized as follows. In the next section, we discussed some basic definitions and preliminary
results. Then, in section 3, we propose the split-step truncated method for It6-SDEs with multidimensional noise and
obtain the uniform boundedness of the p-th moments. In section 4, we analyze the convergence properties of this
method under the non-global Lipschitz conditions. Finally, in section 5, we implement the new method with an
example that confirms the theoretical results.

2. SOME DEFINITIONS AND PRELIMINARY RESULTS

Consider the complete probability space (2, F,P) with the filtration {F;},;>¢ satisfying the usual conditions (i.e.,
it is right continuous and increasing while Fy contains all P-null sets). If z € R%, let |2 = (2% + --- + 22)!/2 be the
Euclidean norm here and throughout the paper. If A € R¥™ then |A| denotes the trace norm for the matrix A,
i.e., |A| = \/trace(AT A). Moreover, a Vb and a A b denote the maximum and minimum, respectively, of the numbers
a,b € R. Finally, the indicator function for a set G is denoted by Ig.

In this paper, we study the numerical solution of the It6 stochastic differential equation

da(t) = f(x(t)dt + Y g;(x(t))dBI(t), 0<t<T, x(0) =z € RY, (2.1)
j=1
where B(t) = (Bi(t),...,Bm(t))T is an m-dimensional Brownian motion defined on the probability space and is F;-
adapted. Here f : RY — R? is drift and g : R? — R¥X™ with g = (g1,...,9m)" is the diffusion. In the following, we
consider numerical methods on a uniform mesh ¢, = nA for n=1,..., N, with step size A =T/N and N € N.
One well-known method for approximating the SDE (2.1) is the Milstein method
Vi =M+ rvha + Zgj(YkM)ABf + Z Z L7 g5, (M), o) (2:2)
j=1 ji=1j2=1

where

. d tht1 , ) )
L gi(x) = g1, ()G, (2), T = / (B” (s) — B> (tk))dB]1(3)~
=1 Lk

In the above relation for [ =1,...,d and jo = 1,...,m, the function Géé (2) is defined as follows:
0 9915, () 99a,j, ()\T
Gl (@) = 5 395.(x) = ( e ) . (2.3)

We consider the case of the SDE (2.1) with commutative noise, i.e., when the diffusion satisfies the commutativity
condition

Li'g;, (v) = Lg;, (z), VzeR?,

for all ji,j» = 1,...,m. With the help of the well-known property I(;, ;) + I(j, ;o) = ABJ*ABJ* for ji # ja, the
Milstein method (2.2) reduces to the following:

m m m d
1 . )
VL = V4 FODA Y g (NABL 4+ 5 3 DT S0 (RGN (ABLABE — 3;,,8). (24)
j=1 ji=1ja=1 =1

(&)
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The Milstein method (2.2) is convergent with order one in the mean square sense under the global Lipschitz condition
and the linear growth condition [24]. However, when this condition is perturbed, the Milstein method is shown to be no
longer convergent [12]. In the next section, we propose a truncated split-step method suitable for numerical solutions
of a class of highly nonlinear SDEs in a finite time interval. To construct this method, we require f,g € C?(R%). We
also estimate the growth rate of the coefficients f and g under the following assumptions.

Assumption 1. There exist real positive constants K; and r such that
[f(@) = F@) V gj (@) = g; ()| V [L7 gz () — L g5 (9)] < Ka(1+ |2]" + [y]") |z — yl,
for all z,y € R? and j,71,jo = 1,...,m.

From Assumption 1, we can choose a strictly increasing continuous function p : Ry — Ry such that p(u) — oo as
u — oo and

sup |f(z) = f(y)] y lg;(®) — g;(y)|
0<|z|V]y|<u |$_y‘ |x—y|

< p(u), (2.5)

for any w > 2 and 7 = 1,...,m. Besides, Assumption 1 implies that
|f(@)| Vgj(x)] < M+ [z, Vi=1,...,m, VzeR? (2.6)
where A\ € Ry

Assumption 2. Suppose for all p > 1, there exists a positive constant K3, dependent on p, such that
(z—y,fl@)— f)+@2p—1) Z\gg y)| < Kslz —yl. (2.7)
If f and g satisfy in Assumption 2, then for all p > 1, we can prove
(z,f(z))+ (2p — 1) Z|g] )| < Xo(1 4+ |2]?), Vo eRY, (2.8)

for some constant Ay > 0 depending on p [9].

Theorem 2.1. /20, pp. 59, Thoprem 4.1] Let Assumptions 1 and 2 hold. Then, the SDE (2.1) with the initial value
2(0) = zg € R? has a unique global solution z(t). Moreover, for any t € [0,T)], there is a positive constant C, that
depends on T, p, and xq, so that

Ela(t)? < 0(1 + |a7(0)|2p>. (2.9)
The following lemma is a natural result of Theorem 2.1, Assumptions 1 and 2, see, e.g., [9, 20].

Lemma 2.2. Let © be a solution of (2.1). If the coefficients of the SDE (2.1) fulfill the Assumptions 1 and 2, then
forallp>1landj=1,...,m,

s (Bl v ELf @)1 v Elg; (@(®)]?) < oo (2.10)

Remark 2.3. For any real number R > |zg|, consider the stopping time
TR := inf{t > 0, |z(t)| > R}. (2.11)

Based on Theorem 2.1, Guo et al. in [9] indicated that there exists a positive constant K independent of R such that

P(rp <T) < (2.12)

R2r°

We will use the fundamental inequality (2.11) to prove the main theorem in Section 4.
an

BE
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Assumption 3. We assume there is a positive constant K3 and r € R such that
Vo fi(IV [ Ho fi(2)| V (Vg (2)| V [ Hegij(2)] < K3(1+ |21, vz e RY,

fori =1,...,dand j = 1,...,m, where V., f; and H, f; are the gradient vector and the Hessian matrix of f; with
respect to the variable x, respectively.

3. THE SPLIT-STEP TRUNCATED EXPLICIT MILSTEIN METHOD

In what follows, C' stands for generic positive real constants that can vary from one place to another and depend
on p, T, and x( but are independent of the step size A. To construct the new method, we assume that the function
u satisfies the following condition in addition to the properties (2.5)

sup (1£(@)| v lg(@)| v GY, 1) < u(w), (3.1)

|z|<u

forany u >2,j=1,....mand I =1,...,d. Due to (2.6) and Assumption 3, the function p is well-defined. Clearly,

=t [1(0), +00) — (0,+00) is a strictly increasing continuous function. Assume there is a number A* € (0,1] and a
strictly decreasing function A : (0, A*] — (0,400) such that h(A) — oo as A — 0 and for any A € (0, A*], we have
AYAR(A) <1, p(1) < h(AY). (3.2)

For a given Step size A € (0, A*], let us define the truncation mapping 7 : R? — R? by ma(z) := (u ' (M(A)) A|x]) ﬁ,
where we set | | =0ifz=0.

Remark 3.1. For given z,y € R? and a fixed A € (0, A*], if |#| > p~1(h(A)) and |y| > =1 (h(A)), then

1
ma(o) = ma )] = [ @ ) AN (g~ 1)
<Jo ol et apy Il <opy y)

For z,y € R? with |y| < u~Y(h(A)) < |z|, set a := %}LI(A)) < 1. In this case

= |az —y| = [a(@ —y) + (@ = 1)y|

|ma(@) = 7a(y)
|\ x| — p~t(h(A))

| \
<o —yl+ x| = p~ (R(A) < |z —y| + |z| — |y < 2z —yl.

<alz—yl+yl(l—a) <|z—y[+y

So, from the above relations, we can conclude
[ma(z) = 7aly)| < 20z -y, (3.3)
for all z,y € RY.

In the following, for a given step size A € (0, A*], we define the truncation functions by

f(@) = f(ma(x)), §(x) = gj(ma(x)), Gi(x):=Gj(mal@)), (3.4)
forl=1,...,dand j =1,...,m. It is obvious from (3.1) that
|f(@)] V|3 (2)] V |GS(x)] < h(A), Vo e R (3.5)

Lemma 3.2. ([16, 22]) Let (2.8) hold. Then, for all A € (0, A*] and x € R?
(. (@) zp—lzm )< X1+ [21?), (3.6)

for some constat A3 mdependent of A.
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Now, according to the definition of the truncation functions (3.4), we introduce a split-step numerical method for
the SDE (2.1) with Yy = 2z and

?k =Y.+ Af(Yk), (37)
Yk+1 Yk + Zgj Yk ABJ + = Z Zgl g1 Yk Gl Y’IC)A.BMABJ2 - ZZQZ’J k)A (38)
j=1 JI’J2 11=1 j 11=1

From now on, to simplify the notation, we set

legjz ZQLJ] (39)

Therefore, the proposed method (3.8) reduces to the simple version as below:

?k =Y.+ Af(Yk),

Vi1 =Yi+ Y 3;(Yi)AB] + % > L, (Y,Q(ABQAB? - 5j1,j2A)-
Jj=1 J1,d2=1
Now, we form a continuous-time version of the truncated split-step Milstein method (3.8). In this regard, first, for any
step size A € (0, A*] satisfying in (3.2), we define Y (t) = Y3 and Y (t) = Y}, for ), <t < tx11. Then, continuous-time
version of the new method (3.8) is defined by

+/t fy( ds—i—Z/ G;(Y(s))dB? (s) + Z/ ZLJlgjz (Y(s))AB’2(s)dB’(s), (3.10)

Ji=17tk jo=1

in which
AB72(s Zf[tk,tkﬂ) (B72(s) — B’2(ty,)). (3.11)
Since Y (t) )+ ft'““ f ))ds for all tj, <t < ty1, so we can rewrite (3.10) as follows

y(t) — V() = — /t TR ds+2 / (Y ())dBI (s) + Z /t ZLJlg” (V(s))AB (s)dB (s).
e (3.12)

Lemma 3.3. Fiz the step size A € (0, A*]. Then for allt >0 andp > 1
E(ly(t) — Y ()]") < CAP(h(A))?, (3.13)

where C' is a positive constant independent of A.

Proof. Obviously, for all ¢ > 0, there is a unique integer k£ > 0 such that t; <t < txy1. Using Holder inequality and

(3.5) we can write
t t 2p—1
/ f ds < E / / ds
tr tk

< APTIE /t f(Y(S))‘des < A(h(A))?P. (3.14)

Now, because of the inequality | Z?_l ai|p <P JalP from (3.10), we have

/t: F(Y (s))ds ‘Z/ G;(Y(s))dB’ (s +‘21/tk ZlL’ 35 (Y (s))AB™ (s )dle(s)‘QP)

(3.15)

E[Y(t) — F(Y(s) ‘2pds

Ely(t) — ¥ (1) < CIE(

(=)=
E)NE
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Then, by Theorem 7.1 in [20] (Page 39), we have

2p

¢
E|y(t) — Y ()| < O(AQPlE/ f(Y(s)) Z]E ds
tr
— ) 2p
legj (s)‘ ds |.
Ji=1j2=1 bk
Applying the fact that E|AB2(s)|?? < CAP for s € [ty,tr+1) and the relation (3.5), we can conclude
E|y(t) — Y (1) < C(A%(h(A))* + AP(A(A))?P + A% (h(A))™). (3.16)
]

Lemma 3.4. If the relation (2.8) holds, then for any T > 0 there is a positive constant C' independent of A € (0, A*]
such that

sup ( sup Ely(t)|*?) < C(1+E[y(0)]*?), Vp>1. (3.17)
0<A<A* 0<t<T

Proof. For t € [ti,tg+1), we have

m

y(t) :Yk+/t fY( ds—i—Z/ §; (Y (s))dB (s) + Z/ Z L7 g5, (Y (5))AB? (s)dB7 (s).

ji=17tk jo=1

On the other hand, according to the definition Y} and Y, we can write

ty m ) o tk ) . .
Yi = Vi1 +Z/ i (Vie))dB(s) + > thjz(yk,l)(/ (B (s) —Bh(tk,l))ch(s)), (3.18)
b1 Ji,j2=1 te—1
in which
— - te
Vi1 =Y+ Af(Yio)) =Yeor + | f(Y(s))ds. (3.19)
th—1

So, with definition AB7(s) in (3.11), we obtain

Yi = Vi1 +Z/t ))dBI (s) + Z / Z L71g,, (Y (s))AB=(s )dle(s)). (3.20)

ji=1 =1 jy=1
Therefore,

t

y(t) = Vi1 + ds—f—Z/ ))dB (s +Z/ ZLﬂgjz 5))AB’2(s)dB% (s). (3.21)

tk1 tkl J1=17t=1 jy=1

Continuing this process, we can consider {y(t)};c[0,¢) as an It6 process with the integral form

) =50 + [ Vs + Y [ Vi(ani(s)

V;(t) == g;(Y (1) +ZLJ912 t))ABP(t). (3.22)
[c [m]
(o] ¢ ]
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Let f(t,x) = |z|?* and V(¢) := [V4(t),..., Vin(¥)]T, then by the It6 formula

0P = O + [ (Vap) VB + [ { G+ (TopT0) + Gtrace(VT LAV Js. - (329

hold, in which
H,f(t,x) = 2p|z[*P72T + 4p(p — 1)|z[?P "2z (3.24)

Applying some matrix calculation, we obtain

Strace(V(s) (Ha f)V(5)) = ply()/*"trace (V(s)TV(5)) + 2000 — Dly(s)P"trace((v(s)y() (V(5)Ty(s)) ")
<o y(s) 2 Y Vi) (3.25)

Jj1=1

By inserting (3.25) in (3.23) and applying expectation, we can write

Bl < Bly(O) + 25 | ly(e) P (y(e). F¥ () )ds + 208 / (@2 37 1V, (0) s

J1=1

So, we can rewrite the inequality as bellows

Ely(t) < Ely(0)* + 2E / [y(s)~ 2<< (). f(V(5))) + (20— 1) Z|gh? )
+ 2p(2p-—1 mE/ ly(s)[?P~2 Z Z:‘Lﬁg]2 JAB2 (s )‘st
+ YR / P {yle) - Y(5), 7Y (5)) Vs
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Therefore, from (3.1) and (3.6), we can conclude that
B0 < (O + 208 [ (s)=2(1 4 [F(5)2)ds
+2mpten — DE [ 1o(s) ()| ads
e [ Py - <Y<s>>>ds
+28 [ )P (s) -
#28 [ WPV - V(6. F0 ) - 7
+ B / )P (¥ (), FY() = F(V(5)))ds

< Ely(0)% + 2p(Aally +m?(2p — DIz + 1Ty

ds

khr

f(Y(9))

~_

&hz

(V(s)) )ds

T+ T + Tl ).
Now, by applying the Young inequality that is

2p — 2 1
2p72y < pQT‘TQP + Z)ypa VP Z 13 Va:,y € R+7

we try to estimate the values II;, for i = 1,...,6. Concerning ITy, we use (3.27) to arrive at

3p—2 p—1

2p— 2 ) 2
E Pd
<222 [y ras +

For Iy, (3.27) and (3.2) gives

w—2 [t 1
I, < L / Ely(s)|*’ds + ~t.
2p 0 p

By the relations (3.2), (3.5), (3.27), and Lemma 3.3, we obtain

= 2p2p2 / Ely(s)|ds + E / ly(s) = Y (s)[P| F (Y (5))|Pds

2p — 2 C
d / Ely(s)[>ds + —t
2p 0 b

Concerning I, similarly as above, Lemma 3.3 gives

< 222 [y 18 [ 1ve) - i o)p

2p—2 A p/2

< / Ely(s)[ds + ~—t.
2p Jo p

From (3.2), (3.5), (3.27) and Lemma 3.3, we have

II, <

t 2
/ E|Y (s)|*Pds +
0

IN

IN

2p—2 [ % I S\l F s
1y < 22 [ BlyPras + 55 / Y (5) = V(s)PLF(Y () = F(V(5)) s
<222 / Bly(s)|*Pds + = 2 i,

(1422 1AF).

683

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(&)
ENE
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By the relations (3.2), (3.5), (3.27), Lemma 3.3, the inequality (2.5), and Remark 3.1, we can approximate Il as below

2p—2/t ) 1 [t )
ITs < Ely(s pds—|——/IEYs Pds
% ly(s)| % J, [Y'(s)]

0
1 ‘7 s)) — f(Y(s))|*ds
+ 5B [ 1 () = T (o) Pra

2p—2/t ) 1 /t ) 1
< Ely(s)|*Pds + — [ E|Y(s)|*Pds + — APt. 3.33
o [ Eworas+ o [ EV(Pras+ o (3.39)

Inserting (3.28)-(3.33) into (3.26) leads to

t t
Bly(t) < Ely(0) + At + 42 | Bly(o)7ds + 45 [ EIY(9)7ds,
0 0
in which
Ay = max{A\32P(1 + 22771 2m3(2p — 1),2C, 2P} + 1,
Ay = max{(2p — 2)As, (2p — 2)(2p — 1)m?},
A3 = )\323p—1 + 1.
So, we can conclude
t
Ely(t)|?? < E|y(0)|*? + Byt + BQ/ ( sup ]E|y(s)|2pd8),
0 ‘0<u<ls

for some positive real constants B; and Bs. As the sum of the right-hand-side terms in the above inequality is an
increasing function of ¢, we have

t
sup Ely(t)|? §E|y(0)|2p+B1t+B2/ ( sup E|y(s)|2pd5>.
0<s<t 0 ‘0<u<s

By the Gronwall inequality, we obtain

sup Ely(t)[*” < C(1 + Ely(0)*),
0<s<t
which complete the proof. O

Remark 3.5. Let (2.8) hold and A in (0, A*] be fixed. For any ¢t € [0,T], there is integer number k such that
t € [tp,tke1) and Y (t) = Y. From (3.2), (3.5) and (3.7), we can write
V() < [Y ()] +AIF(Y ()] < [Y(1)] + A1

Therefore, by elementary calculation and from Lemma 3.4 we write

BV ()2 <22 swp (sup EY(HIF) +1),
0<A<LA* 0<t<T
which implies

sup ( sup E[Y(t)*F) < <. (3.34)
0<A<A* 0<t<T

Below we present two useful lemmas that are a natural consequence of 3.4 and Remark 3.5, see [9] for more details.

Lemma 3.6. Let y(t) be the numerical approzimation generated by (3.10), if Assumptions 1, 2, and 3 hold, then for
allp>1and ji1,jo=1,...,m,

sup sup (B (y(t)” VIS ()7 v Elg(y®)" VEIL" (g5 (y(t)I7) < .
0<A<LA* 0<t<T

oo

og
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Proof. From Lemma 3.4 and Remark 3.5, the result is obvious. It is worth mentioning, because of the relation (3.34)
with Assumptions 1, 2, and 3, one can similarly arrive at

sup _sup (EIF(Y()P VELS (YO VElg(Y(£) VEIL” (g, (V1)) < oo
A€[0,A*] t€[0,T]

Lemma 3.7. For any real number R > |xo| + A*|f(xo)|, consider two stopping times

yr = inf{t > 0,|Y(t)| > R}, and pr = inf{t >0, |y(t)| > R}. (3.35)
Let the condition (2.8) hold and R > |xo| + A*|f(x0)| be fized. Then for any sufficiently small step size A € (0, A*],
there exists positive constant K' independent of R and A such that

= R
Proof. By (2.8) and Lemma 3.4, we can derive that
E(ly(pr AT)[*) < K7,

for a positive real constant K}. Therefore,

R¥P(pr < T) = E(Jy(pr) " I(pn<ry ) < Ely(or AT)* < K.

On the other hand, by (2.8) and Remark 3.5, one can similarly arrive at

!/

K

for some constant K which complete the proof. O

4. CONVERGENCE ANALYSIS
Let 1 : R? — R? be a twice differentiable function. Then, by Taylor’s formula, for each 21, zo € R, we have

P(z2) —P(21) = ' (21)(22 — 21) + R(), (4.1)

in which
1
R('I/J) = / (1 - )\)11)”(21 + )\(22 - Zl)) (22 — Z1,%2 — Zl)d>\
0

Here, for arbitrary z, h, and he in R?, the derivatives have the following expression
d d

d o _ 82
¥'(2)(h) = 8;%’1. Lo (@) (hhe) =0 Y pind,

i=1 i=1 j=1

For any t € [tg,tx+1) from (3.10) and (3.12), by replacing v by g; in (4.1), we can write
a®) 5 (0) = (3 [ HFGB) + Rulon) (12)
j=1"tk

in which

Rl<gi>=gz<y<t>>( Nas+ 3 [ 30 1, (FlepaBe(s)ash o)

J1=17t jo=1

1
+ /0 (1= N)g (Y(s) + Ay(s) = Y(5))) (y(s) = Y(s), y(s) = Y(s))dA.
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Similarly, we have

5 (0() = 0:(V(0) = (VO (Y- [ V(B (5)) + Rala). (43)

where

Ralo) =i (VO) (= [ Frenas+ 3 [ 30 0 (Fe)AB» ()8 (5))

+ /0 (1= Ng/ (Y(s) + Ay(s) = Y(s)) (y(s) = Y (5),y(s) = Y (s))dA.

In the following, with the help of Assumptions 1 and 2, we prove the next useful lemma.

Lemma 4.1. Let y(t) be the numerical approzimation generated by (3.10), if Assumption 1, 2 and 3 hold, then for
allp>landj=1,...,m,

E|Ri(f)” V E|R: ()| V E|Ro ()P V E|Ra(g;)[” < CAP(h(A)), (4.4)

where C is a positive constant independent of A.
Proof. Let j € {1,...,m} be fixed. To estimate E|Ry(g;)[P from the Holder inequality, we can write

E|Ry(gj)I" < C lN’]E gV (O)(F(Y (1))

‘ p

p

6 (V) (L33, (TO)NABL ABP = 5;,1,8))|

1
B[ (1= 0 (V) + Mu(5) = V() () = T (s).(5) = V() A

< 0[21 N A 23] (4.5)

Concerning ¥4, for t € [0,7] by the Holder inequality, Lemma 3.6 and (3.5), we have
_ /2, . 1/2
< AP (Bl (T )P) T (BIF(r(i)P) < CAP(h(A))". (4.6)
For 35, from the Holder inequality and the Burkholder-Davis-Gundy inequality, by independence of ABil, ABZ,Z and

Y (t), we can write

Ji,d2=1

p

g (V (1) (1" G5, (V(1))

(4.7)

m

<A S [Elg)(Y(8)PPEILT g5, (Y (1))

Ji,92=1

V2 < OAP(R(A))P.
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Finally, from Assumption 3, the Jensen inequality, the Holder inequality, and Lemma 3.4, one can derive

Za < [ (= AVE]g (V) + Mult) = V(0) (4(8) = V(0.0(0) = V()] "

1 1/2
= /
0

dX
< O(1+Ely(0)]P0+) 4 B[V ()Y 2 (Ey(r) — V(1))
< AP(R(A))?*. 48)

E

YV (0) + Awls) — V(1) Ely() )

Substituting, (4.1)-(4.8) into (4.5), we obtain the desired assertion for E|Ry(g;)[?. For to the same reason, the other
terms in (4.4) are proven. O

Here, following two theorems, we show that if Assumptions 1, 2, and 3 hold, the associated split-step truncated
Milstein method, defined as (3.10), has a strong rate of convergence close to one in the mean square sense. In
this context, we define e(t) := z(t) — y(t) for 0 < t < T as the global error. Moreover, for each real number
R > |zo| + A*|f(x0)| we consider the stopping times T, pr and vg defined in (2.11) and (3.35).

Theorem 4.2. Consider any given real number R > |zo| + A*|f(xo)|. If the coefficients of SED (2.1) satisfy As-
sumptions 1-3, then for any step size A € (0, A*] with property u=*(h(A)) > R and for any p > 1

E(le(t A 6)[2") < Cmax{AP*!, A% (R(A))¥}, (4.9)
where 0 :== Tp A pr NYR.-

Proof. We try to estimate e(t A 0) for the approximation solution y(t). In this regard, from relations (2.1) and (3.10),
we can write

tA0 3 tno o mo ‘
(6 0)= [ (7lats) ~ s+ [ (a6~ 8,76 - Y. L0 (F()ABI5)) ().
= (4.10)

Following the similar approach presented in Theorem 3.4 in [9], we can use the Itd formula to write for any 0 < ¢ < T

tAO
E(Je(t A 6]) = 2 / e(5)[22(a(s) = y(s), fl@(5)) = F(V (s)) )ds

m tAO . o
+2) E / e(s) P22 L gy a(s) — (V)
2
— ST LGV (s)AB(s)| ds. (4.11)
Z

In (4.11), the real values s have been placed at the interval [0,£A6], so [Y (s)|V[Y (s)| < R. Given that p~'(h(A)) > R,
we have |Y (s)| V [Y(s)] < p~(h(A)). Therefore, from (4.11) and (4.3), we can write

tAG
E(le(t A 0) < 2pB / |e<s>\2p-2(<m<s> — (), f(a(s)) = F(y(5)))

+(2p y(s))r)ds +2p0 (4.12)

tAg
21 D 2
+2p(2p - 1) }jE / ()P Falg) s,
i=1
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in which T" := Efome $)|2P72(x(s) — y(s), f(y(s)) — f(Y(s)))ds. Now, by applying Assumption 2 and the Young
inequality (3.27) we obtaln
Ao

tAO m
Blle(t 1 07" < C(E [ le()Pds + 308 [ (e(s) 7 + | Rl ")) 4207

To approximate T, one can write with the help of the Young inequality (3.27) and the Holder inequality

FgCE/OMHOB( )27+ [(a(s) = yls), ()] ds
- 2pp1E/ON (2(s) = Jf;/tk 9;(Y (s1))dB’ 81))>‘pd8
tAO —1
<CE [ () + (1)) : (4.13)
in which
J ;:E/Ow (x(s) — Z/t g;(Y dBJ(sl))>‘pds. (4.14)

Here, ks is the greatest integer number such that ¢x, < s <ty 41. Therefore, it remains to estimate the last term in
(4.13). In this regard, by consider Ji, := f'(Y(s)) (372, fti 9;(Y (s1))dB¥(s1)) from Lemma 3.6, we have

E|J. [ = (V(51)))dB (s1) (4.15)
< m* 121@‘ $))(g;(Y (s )))dBj(sl)fp
< m2pP— 1( ( PA(;D 1) ZE/ / (gj(?(sl)))rpds
<P (p(2p — DAY Y E|S (Vi) < OO
On the other hand, since t, < s < tr 41, we have
x(s) —y(s) = (@(te,) — Yr.) + /ts [f(x(u) = f(x(tr,))]du
= (s = te ) f(Yi,) + (s — te, ) f(2(tr.,))
+3 [ tetu) ~ sV - Y- DoV () AB ()] a5 w)
So with some simplifications, we can deduce
2(s) —y(s) = (x(tr,) — Yi,) + /: [f(@(u) = f(x(t,))]du+ By,
" Z / 9i((u)) — gs(y(w)) + Ra(g)| 4B (u), (416)
in which
Br, == (s — tw,) (f(2(tr,)) — F(Yr,)). (4.17)
[c [m]
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Inserting the expression (4.16) into (4.14) gives

tAO s
725 [ (et - fete)]de gl

5718 [0 [ [ - )] 5, g P

0 i=1"tks
+5p—1E/m\<i/s Ry(gi)dB' (u), J >\pd5+E/N|<5 Je )|’
0 — J. 2\Yi y Sk 0 ksyr Jks

tAO
+ 5p_1E/ (@ (tr,) = Yio, Ji.) | ds
0

=5 NI+ o+ Ty 4 Ty + Js).

For Ji, we use the Holder inequality and (4.15) and Lemma 3.5 in [32], to arrive at

new [ (] 1teton = statean] .o

< [T (E|[ e - el )" @,

thg

= [ [ It - f(x(t/cs))fpd“)m (E1 %

(1000 = 1D )

< Cpr A%,

2p)1/2d$

2p)1/2ds

Concerning J,, we apply the Young inequality with € > 0 that is

So, from (4.20) with ¢ = AP(h(A))?P and the relation (2.5) with u = p=!(h(A)), we have

JQSE/M(]fj/S [0:e(w) ~ ()] B )|

< [T(Gry e[ [ [0t~ atyen]an o]

")s

. 2p)ds

<[ (cpr Dar- 1ZE/ J9:Colw) = g () [*du+ S|,

tAO B » 2
< (C 2p ) sup E|e(u)|2p—|— 7A (h(4)) . 2p)ds
0 0<u<s 2
< CP’T/ sup Ele(w)|"ds + Cpr A% (h(A)).
0 0<u<s

) 2p)1/2d8

689

(4.18)

(4.19)

(4.20)

(4.21)

(&)
ENE
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For J3, by using Hoélder’s inequality, Lemma 4.1 and (4.15), we have

tAG
J3<E/ (‘Z/ Ro(g:)dB' (u ‘Jk’)

2p\1/2

<p<2p—1>>pmA3p<h<A>>4p)l (B] 7, |*)*ds < CAZ (h(A))?,

To approximate Jy, we split it into two terms as below:

kino—1

tAO tAO
SB[ (| ds = ZIE/ (671 Yas + [ (B Vs
0

tAO

= Jy1 + Jyo. (4.22)

Concerning Jy1, first, we use the Holder inequality and the relations (4.15) and (2.5) with v = p~!(h(A)). Then, by
the Young inequality (4.20) with e = 8 x 10P~!, we have

kino—1

tus 3 [ E el

kino—1 141

<C Z / 5|87 %ds

<o Y /+ AT (h(A))P (Ele(ts) )2 ds

1=0 “t
< A%( sup E| |2p)1/2(Cp7TAp) 5 x 1077  sup ]E‘ | + CA%,
0<u<tnd 8 0<u<tAd

Following the same approach as in the estimation of Jy;, one can similarly arrive at
king—1

tAO
Jio < E Z / |Bl| |Jl ds +/ (|ﬁkme |p|‘]kme |p)d8)

kine

e 2py1/2 2py1/2 me 2p 1/2
< [ @lpu ") P @1 ) Pas < o [ Ak @] )
< c/ AZ (h(A))P (Ele(ty,)| ™) *ds

< Ag( sup  Ele(u) |2p)1/2(CP7TAp) <= x10"P sup ]E|e(u)|2p + CA%,

- 0<u<tng 8 0<u<tAd

ot
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Now, it remains to approximate J5. Similarly, we split J5 as below:

tAO kino—1 tiy1
Js < E/ (21, — Y., Z E/ (24, _}/'17Jl>|pds
0
tAO
+ ]E/ Kmtkme — Ykme’ kag>|pd8 = J51 + J50. (423)
kino

By applying (4.15), the Hélder inequality and the Young inequality (4.20) with ¢ = 8 x 10P~!, we obtain

kino—1 ti11

s 3 [ Bl W) el

< ( su E|€(U)\2p)l/2 ktfl/tm(ﬂ‘:w |2p)1/2ds
- Ogugg/\ﬁ — Jn :
5 07 . Ckme 1 ti41 E J 2p 1/2 2
< Z
<g 10 s Bl + (02 [ Bl )
5 kino—1 2
— p P
< g x 107 o<iu<F§AeE‘ Ee; Z A/ E|J|"ds

< 5 1077 sup  Ele(u)| ® 4 oartt,
8 0<u<tAd

Finally, it results for J59, similarly as above, that

tAO
Jsz < / (Elary, | = Yoo )" (Bl Jro | 7) 2 ds

kino
2p\1/2 e 2p\1/2
< sw Ble@]”)"? [ (Bl,,.[") s
0<u<tAd Eino
§§><10p sup E| | + CAPF2,
8 0<u<tAl®

By inserting J; for i = 1,...,5 into (4.18) and then (4.13), we have

tAO m tAO
Blle(t 1 077) < C(E [ (e + Fa(0)7)ds + B [ |Rates) )

1
+= sup Ele(u | + C'max{APT1 AP (h(A))*P}
2 o<u<tn
tAO
< C’E/ sup JE‘ | pds—i— —  sup IE’ |
0 0<u<s 0<u<tng
+ Cmax{Ap+1 A?*P(h 4p}
Therefore, we can conclude
tAO
sup E| ’213 < C(IE/ sup E‘ ‘ ds + maX{Ap+1,A2p(h(A))4p}),
0<u<tAl 0 0<u<s
where C' is a positive constant independent of the step size A. By applying the Gronwall inequality, we see
sup IE| ’ < Cmax{APTT A®P(h(A))*}.
0<u<tAl
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To prove the strong convergence rate of the split-step truncated method (3.10), we state the following theorem. It is
worth noting that in this context we adopt the idea of the proof from Theorem 2.1 in [9].

Theorem 4.3. Let the conditions of Assumptions 1 to 3 be satisfied, then there is also a positive real number A*
satisfying (3.2). For any A € (0, A*] and q € (1,+00), let R(Aq) = (A(h(A))Z)_l/(q_l). If there exist 0 < § < A* and
q € (1,+00) such that

u7 (h(A) > RY, WA € (0,4], (4.24)
then, for sufficiently small A € (0, A*], there is a positive constant C independent of A such that
Elo(T) - yn? < CA2(h(A)), (4.25)

for some N =T/A € N.

Proof. The proof of this theorem is very similar to Theorem 2.1 in [9]. We choose ¢ € (1,4+00) and ¢ > 0 such that
the value R(Aq) satisfies the relation (4.24). From now on, let A € (0,0) be a fixed positive number. For this setting,
we have

El2(T) — l/N|2 = E(|9C(T) - yN|21{0>T}) + E(|$(T) - yN|21{95T})

—T1+ T (1.26)
By applying Theorem 4.2 for p = 1, we obtain

T, < CA%(h(A))™ (4.27)
Concerning, T, we use the Young inequality that is

2 < g2 9= 1  a/a-1)

7y < qx + qgl/(q_l)y , Vg e (1,00), (4.28)

for any positive ¢, see [9] for more details. Therefore, for any € > 0 and ¢ > 1, we have
€ 9 q—1
TQ < 5E(|$(T) - yN| q) + WP(QR(A@ < T) (429)

Due to Theorem 2.1 and Lemma 3.4, we can find constant C' independent of A such that

E(j#(T) - yw ) < C. (4:30)
On the other hand, by applying Remark 2.3 and Lemma 3.7, we have

POpow <T) <P(rpo <T)+P(ype <T) +Ploge <T) < ng)%- (4.31)
By setting e = A2(h(A))* in (4.29), from relations (4.30) and (4.31), we can conclude

Ty < CA%(h(A))?, (4.32)
for some constant C' independent of A. Inserting (4.27) and (4.32) into (4.26) complets the proof. O

5. NUMERICAL RESULTS

In this section, we show the efficiency of the proposed method in terms of accuracy and stability. We also numerically
compare the split-step truncated Milstein method (3.10) with the method proposed by Guo et al [9]. Accordingly,
we consider an example of a strongly nonlinear equation and compute the root mean square error of approximation
(RMSE) for a given step size A.

Example 5.1. Consider the scalar nonlinear It6 SDE with a one-dimensional Wiener process
da(t) = (x(t) — 2°(t))dt + 2*(t)dB(t), t >0, x(0)=1. (5.1)

(=)=
E)NE
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FIGURE 1. The RMSE as a function of A to approximate Example 5.1 at time T = 2.

Guo and et al. in [9] considered the SDE (5.1) as a test problem where the linear growth condition is violated.
They show that Assumptions 1-3 are satisfied with » = 4. Concerning (2.5), it is clear
V@O @) =0 sy 52)
0<|z|V]y|<u |$_y‘ |x—y|

Moreover, we have

sup (1f(@)| v |g(@)] V1g'@)]) < u® < 30, (5.3)

lz|<u

for any u > 2. According to (5.2) and (5.3), we choose p(u) = 3u®. On the other hand, for a given ¢ € (0,0.2), we
consider A* = exp(flng)) and define h(A) = 3A~¢ for A € (0, A*). For this setting (3.2) is fulfilled. About (4.24),

0.2
for any ¢ € (0,0.2), we choose ¢ > —9 + 2, which implies
< . |
(1+ q— 1>€IH(A) S -1 In(A) + | In(3), VA € (0,A%) 5.0

Therefore, using elementary calculations we can obtain

—1\5
a7 > 3( (A1) 7). (5.5)
So, the property (4.25) in Theorem 4.3 is fulfilled. Therefore, for any e € (0,0.2), we can deduce
E|z(T) — yn|? < 3C7A%7% A € (0,A%), (5.6)

with N =T/A € N.

To show the efficiency of the split-step method in terms of stability and accuracy, in the following we calculate the
RMSE as a function of the step size A on the log-log scale in Table 1 and Figure 1, respectively. Since there is no
explicit solution for (5.1), we search for a numerical solution with the small step size A = 27!® using the implicit
Milstein-Taylor method [29] and use it as a reference solution. We also use the mean of 5000 independent realizations
to approximate the expected value at the final time T. In Table 1, we compute the RMSE of the new method (3.10)
and the method in [9] for step size A € {277,...,2719} with ¢ = 0.1 at the final time 7 = 2. In this table, we indicate
the value of the mean square error by ”unst” when a method becomes unstable for a certain value of the step size A.

From Table 1 we can deduce that the new method is stable at a step size of A = 277, while the truncated Milstein
method [9] is mean square stable for A < 279, From Table 1, it can be seen that the new method has better properties
in terms of accuracy and stability compared to the truncated Milstein method [9]. In Figure 1, the RMSE is plotted

(&)
ENE
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TABLE 1. The RMSE with € = 0.1 for Example 5.1 at the time T' = 2.

Step size The new method Truncated Milstien method [9]

27 7.79 x 1072 unst.
28 247 x 1072 unst.
279 472 x 1073 2.19 x 1072
2-10 2.26 x 1073 3.53 x 1073

as a function of the step size A. From this figure, it can be seen that the convergence rate of the new method is
very close to one, as expected. Moreover, the figure shows that the new proposed method is more accurate than the
method [9].

6. CONCLUSIONS

The present study is concerned with the numerical solution of a class of highly nonlinear stochastic differential
equations with commutative noise. We have successfully introduced an explicit split-step truncated Milstein method
for nonlinear SDEs under the non-global Lipschitz and superlinear growth coefficients. We obtained the moment
boundedness and the convergence of the numerical solution under some additional conditions. We proved that the
strong convergence rate of the new method can be arbitrarily close to one. Finally, we discussed the efficiency of the
present scheme in terms of stability and accuracy by solving an illustrative example.
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