
Research Paper
Computational Methods for Differential Equations
http://cmde.tabrizu.ac.ir

Vol. 11, No. 4, 2023, pp. 676-695
DOI:10.22034/cmde.2022.51249.2132

An explicit split-step truncated Milstein method for stochastic differential equations

Amir Haghighi∗

Department of Mathematics, Faculty of Science, Razi University, Kermanshah 67149, Iran.

Abstract

In this paper, we propose an explicit split-step truncated Milstein method for stochastic differential equations

(SDEs) with commutative noise. We discuss the mean-square convergence properties of the new method for
numerical solutions of a class of highly nonlinear SDEs in a finite time interval. As a result, we show that the

strong convergence rate of the new method can be arbitrarily close to one under some additional conditions.

Finally, we use an illustrative example to highlight the advantages of our new findings in terms of both stability
and accuracy compared to the results in Guo et al. (2018).
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1. Introduction

Stochastic differential equations are the subject of numerous investigations by scientists [15, 20, 23, 25]. The interest
in these equations arises mainly from their applications to many models in physics, economics, chemistry, biology, etc.
[1, 5, 7, 15, 31]. However, for the majority of nonlinear SDEs, exact solutions are not known. Therefore, numerical
methods become important tools for computing approximate solutions for SDEs [15]. Researchers have proposed
several numerical methods to solve such equations and have well studied the convergence properties of these methods
under the classical global Lipschitz condition (see, e.g., [3, 4, 6, 10, 19, 24, 26, 27]). However, in many applications,
the global Lipschitz and linear growth conditions are perturbed, so most of the proposed methods, such as the Euler-
Maruyama (EM) and Milstein methods, face violated convergence properties [12]. Higham, Mao, and Stuart [14] first
addressed this issue in their influential 2002 paper. They proved that the uniform boundedness of the moments of
both the solution of the SDE and its approximation is sufficient for strong convergence. Subsequently, other numerical
techniques have been proposed to solve the divergence caused by the nonlinearity of the coefficients of the original
system. We can divide these techniques into implicit [5, 14, 21] and modified versions of explicit techniques, and each
of them has its advantages and disadvantages. Implicit methods are characterized by strong convergence and have
extended stability regions, which are well suited for solving stiff problems [2, 11, 29, 30]. However, the implementation
of implicit methods requires the solution of an additional algebraic equation at each time step, which can drastically
increase the computational cost. Therefore, some explicit numerical methods based on changes in drift and diffusion
coefficients have been proposed. These numerical methods include the tamed Euler-Maruyama method [13, 28], the
tamed Milstein method [32], the stopped EM method [18], the truncated EM method [22] and, the partially truncated
Euler–Maruyama method [8]. More recently, Guo et al. [9] introduced a truncated Milstein method for SDEs with
commutative noise. This method was further developed in [16] and, the authors present a new truncated Milstein
method with order one convergence similar to the Milstein method for SDEs with global Lipschitz coefficients. Liao
et al [17] extended the truncated Milstein method to the nonautonomous SDEs with the superlinear state variable
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and the continuous Hölder time variable. Moreover, Zhan et al. in [33] proposed a truncated Milstein method with
convergence of order one in the mean square sense for superlinear SDEs modulated by a Markov chain.

Despite the performance of the truncated Milstein method [8, 16] in the convergence order, there is still a drawback.
The use of explicit methods is often expensive because of the step size reduction due to stability issues. Therefore, for
large step sizes, the ability to preserve the qualitative behavior of the solution of the original system is low [2]. In this
paper, we propose as a fully explicit method a split-step truncated Milstein method for solving Itô SDEs. We study
the convergence properties of the new method under the non-global Lipschitz condition. Following the ideas in [8],
we prove that the new method has a strong convergence rate arbitrarily close to one. Finally, we use an illustrative
example to show the efficiency of the proposed method in terms of both stability and accuracy.

The rest of the paper is organized as follows. In the next section, we discussed some basic definitions and preliminary
results. Then, in section 3, we propose the split-step truncated method for Itô-SDEs with multidimensional noise and
obtain the uniform boundedness of the p-th moments. In section 4, we analyze the convergence properties of this
method under the non-global Lipschitz conditions. Finally, in section 5, we implement the new method with an
example that confirms the theoretical results.

2. Some definitions and preliminary results

Consider the complete probability space (Ω,F ,P) with the filtration {Ft}t≥0 satisfying the usual conditions (i.e.,

it is right continuous and increasing while F0 contains all P-null sets). If x ∈ Rd, let |x| = (x2
1 + · · · + x2

d)
1/2 be the

Euclidean norm here and throughout the paper. If A ∈ Rd×m, then |A| denotes the trace norm for the matrix A,

i.e., |A| =
√
trace(ATA). Moreover, a ∨ b and a ∧ b denote the maximum and minimum, respectively, of the numbers

a, b ∈ R. Finally, the indicator function for a set G is denoted by IG.
In this paper, we study the numerical solution of the Itô stochastic differential equation

dx(t) = f(x(t))dt+

m∑
j=1

gj(x(t))dBj(t), 0 ≤ t ≤ T, x(0) = x0 ∈ Rd, (2.1)

where B(t) = (B1(t), . . . , Bm(t))T is an m-dimensional Brownian motion defined on the probability space and is Ft-
adapted. Here f : Rd → Rd is drift and g : Rd → Rd×m with g = (g1, . . . , gm)T is the diffusion. In the following, we
consider numerical methods on a uniform mesh tn = n∆ for n = 1, . . . , N , with step size ∆ = T/N and N ∈ N.

One well-known method for approximating the SDE (2.1) is the Milstein method

YMk+1 = YMk + f(YMk )∆ +

m∑
j=1

gj(Y
M
k )∆Bkj +

m∑
j1=1

m∑
j2=1

Lj1gj2(YMk )I(j1,j2), (2.2)

where

Lj1gj2(x) =

d∑
l=1

gl,j1(x)Glj2(x), I(j2,j1) =

∫ tk+1

tk

(
Bj2(s)−Bj2(tk)

)
dBj1(s).

In the above relation for l = 1, . . . , d and j2 = 1, . . . ,m, the function Glj2(x) is defined as follows:

Glj2(x) :=
∂

∂xl
gj2(x) =

(∂gl,j2(x)

∂xl
, . . . ,

∂gd,j2(x)

∂xl

)T
. (2.3)

We consider the case of the SDE (2.1) with commutative noise, i.e., when the diffusion satisfies the commutativity
condition

Lj1gj2(x) = Lj2gj1(x), ∀x ∈ Rd,

for all j1, j2 = 1, . . . ,m. With the help of the well-known property I(j1,j2) + I(j2,j1) = ∆Bj1k ∆Bj2k for j1 6= j2, the
Milstein method (2.2) reduces to the following:

YMk+1 = YMk + f(YMk )∆ +

m∑
j=1

gj(Y
M
k )∆Bjk +

1

2

m∑
j1=1

m∑
j2=1

d∑
l=1

gl,j1(YMk )Glj2(YMk )
(

∆Bj1k ∆Bj2k − δj1,j2∆
)
. (2.4)
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The Milstein method (2.2) is convergent with order one in the mean square sense under the global Lipschitz condition
and the linear growth condition [24]. However, when this condition is perturbed, the Milstein method is shown to be no
longer convergent [12]. In the next section, we propose a truncated split-step method suitable for numerical solutions
of a class of highly nonlinear SDEs in a finite time interval. To construct this method, we require f, g ∈ C2(Rd). We
also estimate the growth rate of the coefficients f and g under the following assumptions.

Assumption 1. There exist real positive constants K1 and r such that

|f(x)− f(y)| ∨ |gj(x)− gj(y)| ∨ |Lj1gj2(x)− Lj1gj2(y)| ≤ K1(1 + |x|r + |y|r)|x− y|,

for all x, y ∈ Rd and j, j1, j2 = 1, . . . ,m.

From Assumption 1, we can choose a strictly increasing continuous function µ : R+ → R+ such that µ(u)→∞ as
u→∞ and

sup
0<|x|∨|y|<u

|f(x)− f(y)|
|x− y|

∨ |gj(x)− gj(y)|
|x− y|

≤ µ(u), (2.5)

for any u ≥ 2 and j = 1, . . . ,m. Besides, Assumption 1 implies that

|f(x)| ∨ |gj(x)| ≤ λ1(1 + |x|r+1), ∀j = 1, . . . ,m, ∀x ∈ Rd, (2.6)

where λ1 ∈ R+.

Assumption 2. Suppose for all p ≥ 1, there exists a positive constant K2, dependent on p, such that〈
x− y, f(x)− f(y)

〉
+ (2p− 1)

m∑
j=1

|gj(x)− gj(y)| ≤ K2|x− y|2. (2.7)

If f and g satisfy in Assumption 2, then for all p ≥ 1, we can prove〈
x, f(x)

〉
+ (2p− 1)

m∑
j=1

|gj(x)| ≤ λ2(1 + |x|2), ∀x ∈ Rd, (2.8)

for some constant λ2 > 0 depending on p [9].

Theorem 2.1. [20, pp. 59, Thoprem 4.1] Let Assumptions 1 and 2 hold. Then, the SDE (2.1) with the initial value
x(0) = x0 ∈ Rd has a unique global solution x(t). Moreover, for any t ∈ [0, T ], there is a positive constant C, that
depends on T , p, and x0, so that

E|x(t)|2p ≤ C
(

1 + |x(0)|2p
)
. (2.9)

The following lemma is a natural result of Theorem 2.1, Assumptions 1 and 2, see, e.g., [9, 20].

Lemma 2.2. Let x be a solution of (2.1). If the coefficients of the SDE (2.1) fulfill the Assumptions 1 and 2, then
for all p ≥ 1 and j = 1, . . . ,m,

sup
0≤t≤T

(
E|x(t)|p ∨ E|f(x(t))|p ∨ E|gj(x(t))|p

)
<∞. (2.10)

Remark 2.3. For any real number R > |x0|, consider the stopping time

τR := inf{t ≥ 0, |x(t)| ≥ R}. (2.11)

Based on Theorem 2.1, Guo et al. in [9] indicated that there exists a positive constant K independent of R such that

P(τR ≤ T ) ≤ K

R2p
. (2.12)

We will use the fundamental inequality (2.11) to prove the main theorem in Section 4.
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Assumption 3. We assume there is a positive constant K3 and r ∈ R+ such that

|∇xfi(z)| ∨ |Hxfi(z)| ∨ |∇xgi,j(z)| ∨ |Hxgi,j(z)| ≤ K3

(
1 + |z|r+1

)
, ∀z ∈ Rd,

for i = 1, . . . , d and j = 1, . . . ,m, where ∇xfi and Hxfi are the gradient vector and the Hessian matrix of fi with
respect to the variable x, respectively.

3. The split-step truncated explicit Milstein method

In what follows, C stands for generic positive real constants that can vary from one place to another and depend
on p, T , and x0 but are independent of the step size ∆. To construct the new method, we assume that the function
µ satisfies the following condition in addition to the properties (2.5)

sup
|x|<u

(
|f(x)| ∨ |g(x)| ∨ |Glj2 |

)
≤ µ(u), (3.1)

for any u ≥ 2, j = 1, . . . ,m and l = 1, . . . , d. Due to (2.6) and Assumption 3, the function µ is well-defined. Clearly,
µ−1 : [µ(0),+∞)→ (0,+∞) is a strictly increasing continuous function. Assume there is a number ∆∗ ∈ (0, 1] and a
strictly decreasing function h : (0,∆∗]→ (0,+∞) such that h(∆)→∞ as ∆→ 0 and for any ∆ ∈ (0,∆∗], we have

∆1/4h(∆) ≤ 1, µ(1) ≤ h(∆∗). (3.2)

For a given step size ∆ ∈ (0,∆∗], let us define the truncation mapping π∆ : Rd → Rd by π∆(x) :=
(
µ−1(h(∆))∧|x|

)
x
|x| ,

where we set x
|x| = 0 if x = 0.

Remark 3.1. For given x, y ∈ Rd and a fixed ∆ ∈ (0,∆∗], if |x| > µ−1(h(∆)) and |y| > µ−1(h(∆)), then∣∣π∆(x)− π∆(y)
∣∣ =

∣∣∣µ−1(h(∆))

|x|
(x− y) + µ−1(h(∆))y

( 1

|x|
− 1

|y|
)∣∣∣

≤
∣∣x− y∣∣+ µ−1(h(∆))|y|

∣∣|y| − |x|∣∣
|x||y|

≤ 2
∣∣x− y∣∣.

For x, y ∈ Rd with |y| < µ−1(h(∆)) < |x|, set α := µ−1(h(∆))
|x| < 1. In this case∣∣π∆(x)− π∆(y)

∣∣ =
∣∣αx− y∣∣ =

∣∣α(x− y) + (α− 1)y
∣∣

≤ α|x− y|+ |y|(1− α) < |x− y|+ |y| |x| − µ
−1(h(∆))

|x|
< |x− y|+ |x| − µ−1(h(∆)) < |x− y|+ |x| − |y| < 2|x− y|.

So, from the above relations, we can conclude∣∣π∆(x)− π∆(y)
∣∣ ≤ 2|x− y|, (3.3)

for all x, y ∈ Rd.

In the following, for a given step size ∆ ∈ (0,∆∗], we define the truncation functions by

f̃(x) := f(π∆(x)), g̃j(x) := gj(π∆(x)), G̃lj(x) := Glj(π∆(x)), (3.4)

for l = 1, . . . , d and j = 1, . . . ,m. It is obvious from (3.1) that

|f̃(x)| ∨ |g̃j(x)| ∨ |G̃lj(x)| ≤ h(∆), ∀x ∈ Rd. (3.5)

Lemma 3.2. ([16, 22]) Let (2.8) hold. Then, for all ∆ ∈ (0,∆∗] and x ∈ Rd〈
x, f̃(x)

〉
+ (2p− 1)

m∑
j=1

|g̃j(x)| ≤ λ3(1 + |x|2), (3.6)

for some constat λ3 independent of ∆.
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Now, according to the definition of the truncation functions (3.4), we introduce a split-step numerical method for
the SDE (2.1) with Y0 = x0 and

Y k = Yk + ∆f̃(Yk), (3.7)

Yk+1 = Y k +

m∑
j=1

g̃j(Y k)∆Bjk +
1

2

m∑
j1,j2=1

d∑
l=1

g̃l,j1(Y k)G̃lj2(Y k)∆Bj1k ∆Bj2k −
1

2

m∑
j=1

d∑
l=1

g̃l,j(Y k)G̃lj(Y k)∆. (3.8)

From now on, to simplify the notation, we set

Lj1 g̃j2(x) :=

d∑
l=1

g̃l,j1(x)G̃lj2(x). (3.9)

Therefore, the proposed method (3.8) reduces to the simple version as below:

Y k = Yk + ∆f̃(Yk),

Yk+1 = Y k +

m∑
j=1

g̃j(Y k)∆Bjk +
1

2

m∑
j1,j2=1

Lj1 g̃j2(Y k)
(

∆Bj1k ∆Bj2k − δj1,j2∆
)
.

Now, we form a continuous-time version of the truncated split-step Milstein method (3.8). In this regard, first, for any
step size ∆ ∈ (0,∆∗] satisfying in (3.2), we define Y (t) = Yk and Y (t) = Y k for tk ≤ t < tk+1. Then, continuous-time
version of the new method (3.8) is defined by

y(t) = Y (t) +

∫ t

tk

f̃(Y (s))ds+

m∑
j=1

∫ t

tk

g̃j(Y (s))dBj(s) +

m∑
j1=1

∫ t

tk

m∑
j2=1

Lj1 g̃j2(Y (s))∆Bj2(s)dBj1(s), (3.10)

in which

∆Bj2(s) =

∞∑
k=0

I[tk,tk+1)(B
j2(s)−Bj2(tk)). (3.11)

Since Y (t) = Y (t) +
∫ tk+1

tk
f̃(Y (s))ds for all tk ≤ t < tk+1, so we can rewrite (3.10) as follows

y(t)− Y (t) = −
∫ tk+1

t

f̃(Y (s))ds+

m∑
j=1

∫ t

tk

g̃j(Y (s))dBj(s) +

m∑
j1=1

∫ t

tk

m∑
j2=1

Lj1 g̃j2(Y (s))∆Bj2(s)dBj1(s).

(3.12)

Lemma 3.3. Fix the step size ∆ ∈ (0,∆∗]. Then for all t ≥ 0 and p ≥ 1

E(|y(t)− Y (t)|2p) ≤ C∆p(h(∆))2p, (3.13)

where C is a positive constant independent of ∆.

Proof. Obviously, for all t ≥ 0, there is a unique integer k ≥ 0 such that tk ≤ t < tk+1. Using Hölder inequality and
(3.5) we can write

E
∣∣Y (t)− Y (t)

∣∣2p = E
∣∣∣∫ t

tk

f̃(Y (s))ds
∣∣∣2p ≤ E

(∫ t

tk

∣∣∣f̃(Y (s))
∣∣∣2pds∣∣∣∫ t

tk

ds
∣∣∣2p−1

)

≤ ∆2p−1E
∫ t

tk

∣∣∣f̃(Y (s))
∣∣∣2pds ≤ ∆2p(h(∆))2p. (3.14)

Now, because of the inequality |
∑n
i=1 αi|p ≤ np−1

∑n
i=1 |αi|p from (3.10), we have

E
∣∣y(t)− Y (t)

∣∣2p ≤ CE

(∣∣∣∫ t

tk

f̃(Y (s))ds
∣∣∣2p +

∣∣∣ m∑
j=1

∫ t

tk

g̃j(Y (s))dBj(s)
∣∣∣2p +

∣∣∣ m∑
j1=1

∫ t

tk

m∑
j2=1

Lj1 g̃j2(Y (s))∆Bj2(s)dBj1(s)
∣∣∣2p).

(3.15)
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Then, by Theorem 7.1 in [20] (Page 39), we have

E
∣∣y(t)− Y (t)

∣∣2p ≤ C(∆2p−1E
∫ t

tk

∣∣∣f̃(Y (s))
∣∣∣2pds+ ∆

2p−2
2

m∑
j=1

E
∫ t

tk

∣∣∣g̃j(Y (s))
∣∣∣2pds

+ ∆
2p−2

2

m∑
j1=1

m∑
j2=1

E
∫ t

tk

∣∣∣Lj1 g̃j2(Y (s))
∣∣∣2p∣∣∣∆Bj2(s)

∣∣∣2pds).
Applying the fact that E|∆Bj2(s)|2p ≤ C∆p for s ∈ [tk, tk+1) and the relation (3.5), we can conclude

E
∣∣y(t)− Y (t)

∣∣2p ≤ C(∆2p(h(∆))2p + ∆p(h(∆))2p + ∆2p(h(∆))4p
)
. (3.16)

�

Lemma 3.4. If the relation (2.8) holds, then for any T > 0 there is a positive constant C independent of ∆ ∈ (0,∆∗]
such that

sup
0<∆≤∆∗

(
sup

0≤t≤T
E|y(t)|2p

)
≤ C

(
1 + E|y(0)|2p

)
, ∀p ≥ 1. (3.17)

Proof. For t ∈ [tk, tk+1), we have

y(t) = Yk +

∫ t

tk

f̃(Y (s))ds+

m∑
j=1

∫ t

tk

g̃j(Y (s))dBj(s) +

m∑
j1=1

∫ t

tk

m∑
j2=1

Lj1 g̃j2(Y (s))∆Bj2(s)dBj1(s).

On the other hand, according to the definition Yk and Y k, we can write

Yk = Y k−1 +

m∑
j=1

∫ tk

tk−1

g̃j(Y k−1)dBj(s) +

m∑
j1,j2=1

Lj1 g̃j2(Y k−1)
(∫ tk

tk−1

(
Bj2(s)−Bj2(tk−1)

)
dBj1(s)

)
, (3.18)

in which

Y k−1 = Yk−1 + ∆f̃(Yk−1) = Yk−1 +

∫ tk

tk−1

f̃(Y (s))ds. (3.19)

So, with definition ∆Bj(s) in (3.11), we obtain

Yk = Y k−1 +

m∑
j=1

∫ tk

tk−1

g̃j(Y (s))dBj(s) +

m∑
j1=1

(∫ tk

tk−1

m∑
j2=1

Lj1 g̃j2(Y (s))∆Bj2(s)dBj1(s)
)
. (3.20)

Therefore,

y(t) = Yk−1 +

∫ t

tk−1

f̃(Y (s))ds+

m∑
j=1

∫ t

tk−1

g̃j(Y (s))dBj(s)+

m∑
j1=1

∫ t

tk−1

m∑
j2=1

Lj1 g̃j2(Y (s))∆Bj2(s)dBj1(s). (3.21)

Continuing this process, we can consider {y(t)}t∈[0,t) as an Itô process with the integral form

y(t) = y(0) +

∫ t

0

U(s)ds+

m∑
j=1

∫ t

0

Vj(s)dB
j(s),

in which

U(t) := f̃(Y (t)),

Vj(t) := g̃j(Y (t)) +

m∑
j2=1

Lj g̃j2(Y (t))∆Bj2(t). (3.22)
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Let f(t, x) = |x|2p and V (t) := [V1(t), . . . , Vm(t)]T , then by the Itô formula

|y(t)|2p = |y(0)|2p +

∫ t

0

(∇xf)TV (s)dB(s) +

∫ t

0

{∂f
∂t

+ (∇xf)TU(s) +
1

2
trace

(
V (s)T (Hxf)V (s)

)}
ds, (3.23)

hold, in which

Hxf(t, x) = 2p|x|2p−2I + 4p(p− 1)|x|2p−4xxT . (3.24)

Applying some matrix calculation, we obtain

1

2
trace

(
V (s)T (Hxf)V (s)

)
= p|y(s)|2p−2trace

(
V (s)TV (s)

)
+ 2p(p− 1)|y(s)|2p−4trace

((
V (s)T y(s)

)(
V (s)T y(s)

)T)
≤ 2p

2p− 1

2
|y(s)|2p−2

m∑
j1=1

|Vj1(s)|2. (3.25)

By inserting (3.25) in (3.23) and applying expectation, we can write

E|y(t)|2p ≤ E|y(0)|2p + 2pE
∫ t

0

|y(s)|2p−2
〈
y(s), f̃(Y (s))

〉
ds+ 2pE

∫ t

0

2p− 1

2
|y(s)|2p−2

m∑
j1=1

|Vj1(s)|2ds.

So, we can rewrite the inequality as bellows

E|y(t)|2p ≤ E|y(0)|2p + 2pE
∫ t

0

|y(s)|2p−2

(〈
Y (s), f̃(Y (s))

〉
+ (2p− 1)

m∑
j1=1

∣∣g̃j1(Y (s))
∣∣2)ds

+ 2p(2p− 1)mE
∫ t

0

|y(s)|2p−2
m∑
j1=1

m∑
j2=1

∣∣∣Lj1 g̃j2(Y (s))∆Bj2(s)
∣∣∣2ds

+ 2pE
∫ t

0

|y(s)|2p−2
〈
y(s)− Y (s), f̃(Y (s))

〉
ds

+ 2pE
∫ t

0

|y(s)|2p−2
〈
Y (s)− Y (s), f̃(Y (s))

〉
ds

+ 2pE
∫ t

0

|y(s)|2p−2
〈
Y (s)− Y (s), f̃(Y (s))− f̃(Y )(s)

〉
ds

+ 2pE
∫ t

0

|y(s)|2p−2
〈
Y (s), f̃(Y (s))− f̃(Y (s))

〉
ds.
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Therefore, from (3.1) and (3.6), we can conclude that

E|y(t)|2p ≤ E|y(0)|2p + 2pλ3E
∫ t

0

|y(s)|2p−2
(
1 + |Y (s)|2

)
ds

+ 2m3p(2p− 1)E
∫ t

0

|y(s)|2p−2
∣∣h(∆)

∣∣4∆ds

+ 2pE
∫ t

0

|y(s)|2p−2
〈
y(s)− Y (s), f̃(Y (s))

〉
ds

+ 2pE
∫ t

0

|y(s)|2p−2
〈
Y (s)− Y (s), f̃(Y (s))

〉
ds

+ 2pE
∫ t

0

|y(s)|2p−2
〈
Y (s)− Y (s), f̃(Y (s))− f̃(Y (s))

〉
ds

+ 2pE
∫ t

0

|y(s)|2p−2
〈
Y (s), f̃(Y (s))− f̃(Y (s))

〉
ds

≤ E|y(0)|2p + 2p
(
λ3Π1 +m3(2p− 1)Π2 + Π3

+ Π4 + Π5 + Π6

)
. (3.26)

Now, by applying the Young inequality that is

x2p−2y ≤ 2p− 2

2p
x2p +

1

p
yp, ∀p ≥ 1, ∀x, y ∈ R+, (3.27)

we try to estimate the values Πi, for i = 1, . . . , 6. Concerning Π1, we use (3.27) to arrive at

Π1 ≤
2p− 2

2p

∫ t

0

E|y(s)|2pds+
23p−2

p

∫ t

0

E|Y (s)|2pds+
2p−1

p
(1 + 22p−1∆

3p
2 )t. (3.28)

For Π2, (3.27) and (3.2) gives

Π2 ≤
2p− 2

2p

∫ t

0

E|y(s)|2pds+
1

p
t. (3.29)

By the relations (3.2), (3.5), (3.27), and Lemma 3.3, we obtain

Π3 ≤
2p− 2

2p

∫ t

0

E|y(s)|2pds+
1

p
E
∫ t

0

|y(s)− Y (s)|p|f̃(Y (s))|pds

≤ 2p− 2

2p

∫ t

0

E|y(s)|2pds+
C

p
t. (3.30)

Concerning Π4, similarly as above, Lemma 3.3 gives

Π4 ≤
2p− 2

2p

∫ t

0

E|y(s)|2pds+
1

p
E
∫ t

0

|Y (s)− Y (s)|p|f̃(Y (s))|pds

≤ 2p− 2

2p

∫ t

0

E|y(s)|2pds+
∆p/2

p
t. (3.31)

From (3.2), (3.5), (3.27) and Lemma 3.3, we have

Π5 ≤
2p− 2

2p

∫ t

0

E|y(s)|2pds+
1

p
E
∫ t

0

|Y (s)− Y (s)|p|f̃(Y (s))− f̃(Y (s))|pds

≤ 2p− 2

2p

∫ t

0

E|y(s)|2pds+
2p−1

p
∆p/2t. (3.32)
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By the relations (3.2), (3.5), (3.27), Lemma 3.3, the inequality (2.5), and Remark 3.1, we can approximate Π6 as below

Π6 ≤
2p− 2

2p

∫ t

0

E|y(s)|2pds+
1

2p

∫ t

0

E|Y (s)|2pds

+
1

2p
E
∫ t

0

|f̃(Y (s))− f̃(Y (s))|2pds

≤ 2p− 2

2p

∫ t

0

E|y(s)|2pds+
1

2p

∫ t

0

E|Y (s)|2pds+
1

2p
∆pt. (3.33)

Inserting (3.28)-(3.33) into (3.26) leads to

E|y(t)|2p ≤ E|y(0)|2p +A1t+A2

∫ t

0

E|y(s)|2pds+A3

∫ t

0

E|Y (s)|2pds,

in which

A1 := max{λ32p(1 + 22p−1), 2m3(2p− 1), 2C, 2p}+ 1,

A2 := max{(2p− 2)λ3, (2p− 2)(2p− 1)m3},
A3 := λ323p−1 + 1.

So, we can conclude

E|y(t)|2p ≤ E|y(0)|2p +B1t+B2

∫ t

0

(
sup

0≤u≤s
E|y(s)|2pds

)
,

for some positive real constants B1 and B2. As the sum of the right-hand-side terms in the above inequality is an
increasing function of t, we have

sup
0≤s≤t

E|y(t)|2p ≤ E|y(0)|2p +B1t+B2

∫ t

0

(
sup

0≤u≤s
E|y(s)|2pds

)
.

By the Gronwall inequality, we obtain

sup
0≤s≤t

E|y(t)|2p ≤ C(1 + E|y(0)|2p),

which complete the proof. �

Remark 3.5. Let (2.8) hold and ∆ in (0,∆∗] be fixed. For any t ∈ [0, T ], there is integer number k such that
t ∈ [tk, tk+1) and Y (t) = Y k. From (3.2), (3.5) and (3.7), we can write

|Y (t)| ≤ |Y (t)|+ ∆|f̃(Y (t))| ≤ |Y (t)|+ ∆3/4.

Therefore, by elementary calculation and from Lemma 3.4 we write

E|Y (t)|2p ≤ 22p−1
(

sup
0≤∆≤∆∗

(
sup

0≤t≤T
E|Y (t)|2p

)
+ 1
)
,

which implies

sup
0≤∆≤∆∗

(
sup

0≤t≤T
E|Y (t)|2p

)
<∞. (3.34)

Below we present two useful lemmas that are a natural consequence of 3.4 and Remark 3.5, see [9] for more details.

Lemma 3.6. Let y(t) be the numerical approximation generated by (3.10), if Assumptions 1, 2, and 3 hold, then for
all p ≥ 1 and j1, j2 = 1, . . . ,m,

sup
0≤∆≤∆∗

sup
0≤t≤T

(
E|f(y(t))|p ∨ E|f ′(y(t))|p ∨ E|g(y(t))|p ∨ E|Lj1(gj2(y(t))|p

)
<∞.
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Proof. From Lemma 3.4 and Remark 3.5, the result is obvious. It is worth mentioning, because of the relation (3.34)
with Assumptions 1, 2, and 3, one can similarly arrive at

sup
∆∈[0,∆∗]

sup
t∈[0,T ]

(
E|f(Y (t))|p ∨ E|f ′(Y (t))|p ∨ E|g(Y (t))|p ∨ E|Lj1(gj2(Y (t))|p

)
<∞.

�

Lemma 3.7. For any real number R > |x0|+ ∆∗|f(x0)|, consider two stopping times

γR := inf{t ≥ 0, |Y (t)| ≥ R}, and ρR := inf{t ≥ 0, |y(t)| ≥ R}. (3.35)

Let the condition (2.8) hold and R > |x0|+ ∆∗|f(x0)| be fixed. Then for any sufficiently small step size ∆ ∈ (0,∆∗],
there exists positive constant K ′ independent of R and ∆ such that

P(γR ≤ T ) ∨ P(ρR ≤ T ) ≤ K

R2p
. (3.36)

Proof. By (2.8) and Lemma 3.4, we can derive that

E(|y(ρR ∧ T )|2p) ≤ K ′1,

for a positive real constant K ′1. Therefore,

R2pP(ρR ≤ T ) = E
(
|y(ρR)|2pI{ρR≤T}

)
≤ E|y(ρR ∧ T )|2p ≤ K ′1.

On the other hand, by (2.8) and Remark 3.5, one can similarly arrive at

P(γR ≤ T ) ≤ K ′2
R2p

,

for some constant K ′2 which complete the proof. �

4. Convergence analysis

Let ψ : Rd → Rd be a twice differentiable function. Then, by Taylor’s formula, for each z1, z2 ∈ R, we have

ψ(z2)− ψ(z1) = ψ′(z1)(z2 − z1) +R(ψ), (4.1)

in which

R(ψ) :=

∫ 1

0

(1− λ)ψ′′
(
z1 + λ(z2 − z1)

)(
z2 − z1, z2 − z1

)
dλ.

Here, for arbitrary z, h1 and h2 in Rd, the derivatives have the following expression

ψ′(z)(h1) =

d∑
i=1

∂ψ

∂xi
hi1, ψ′′(z)(h1, h2) =

d∑
i=1

d∑
j=1

∂2ψ

∂xi∂xj
hi1h

j
2.

For any t ∈ [tk, tk+1) from (3.10) and (3.12), by replacing ψ by gi in (4.1), we can write

gi(y(t))− gi(Y (t)) = g′i(Y (t))
( m∑
j=1

∫ t

tk

g̃j(Y (s)dBj(s)
)

+ R̃1(gi), (4.2)

in which

R̃1(gi) = g′i(Y (t))
(∫ t

tk

f̃(Y (s))ds+

m∑
j1=1

∫ t

tk

m∑
j2=1

Lj1 g̃j2(Y (s))∆Bj2(s)dBj1(s)
)

+

∫ 1

0

(1− λ)g′′i
(
Y (s) + λ(y(s)− Y (s))

)(
y(s)− Y (s), y(s)− Y (s)

)
dλ.
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Similarly, we have

gi(y(t))− gi(Y (t)) = g′i(Y (t))
( m∑
j=1

∫ t

tk

g̃j(Y (s)dBj(s)
)

+ R̃2(gi). (4.3)

where

R̃2(gi) = g′i(Y (t))
(
−
∫ tk+1

t

f̃(Y (s))ds+

m∑
j1=1

∫ t

tk

m∑
j2=1

Lj1 g̃j2(Y (s))∆Bj2(s)dBj1(s)
)

+

∫ 1

0

(1− λ)g′′i
(
Y (s) + λ(y(s)− Y (s))

)(
y(s)− Y (s), y(s)− Y (s)

)
dλ.

In the following, with the help of Assumptions 1 and 2, we prove the next useful lemma.

Lemma 4.1. Let y(t) be the numerical approximation generated by (3.10), if Assumption 1, 2 and 3 hold, then for
all p ≥ 1 and j = 1, . . . ,m,

E|R̃1(f)|p ∨ E|R̃1(gj)|p ∨ E|R̃2(f)|p ∨ E|R̃2(gj)|p ≤ C∆p
(
h(∆)

)2p
, (4.4)

where C is a positive constant independent of ∆.

Proof. Let j ∈ {1, . . . ,m} be fixed. To estimate E|R̃2(gi)|p from the Hölder inequality, we can write

E|R̃2(gj)|p ≤ C

[
∆pE

∣∣∣g′j(Y (t))(f̃(Y (t))
∣∣∣p

+
1

2p

m∑
j1,j2=1

E
∣∣∣g′j(Y (t))

(
Lj1 g̃j2(Y (t))(∆Bj1k ∆Bj2k − δj1,j2∆)

)∣∣∣p
+ E

∣∣∣∫ 1

0

(1− λ)g′′j
(
Y (s) + λ(y(s)− Y (s))

)(
y(s)− Y (s), y(s)− Y (s)

)
dλ
∣∣∣p]

≤ C
[
Σ1 + Σ2 + Σ3

]
. (4.5)

Concerning Σ1, for t ∈ [0, T ] by the Hölder inequality, Lemma 3.6 and (3.5), we have

Σ1 ≤ ∆p
(
E|g′j(Y (t))|2p

)1/2(
E|f̃(Y (t))|2p

)1/2

≤ C∆p(h(∆))p. (4.6)

For Σ2, from the Hölder inequality and the Burkholder-Davis-Gundy inequality, by independence of ∆Bj1k , ∆Bj2k and
Y (t), we can write

Σ2 ≤ ∆p
m∑

j1,j2=1

E
∣∣∣g′j(Y (t))

(
Lj1 g̃j2(Y (t))

)∣∣∣p (4.7)

≤ ∆p
m∑

j1,j2=1

[
E|g′j(Y (t))|2pE|Lj1 g̃j2(Y (t)|2p

]1/2 ≤ C∆p(h(∆))2p.
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Finally, from Assumption 3, the Jensen inequality, the Hölder inequality, and Lemma 3.4, one can derive

Σ3 ≤
∫ 1

0

(1− λ)pE
∣∣∣g′′j (Y (t) + λ(y(t)− Y (t))

)(
y(t)− Y (t), y(t)− Y (s)

)∣∣∣pdλ
≤
∫ 1

0

[
E
∣∣∣g′′j (Y (t) + λ(y(s)− Y (t))

)∣∣∣2pE∣∣y(t)− Y (t)
∣∣4p]1/2

dλ

≤ C
(
1 + E|y(t)|2p(r+1) + E|Y (t)|2p(r+1)

)1/2(E∣∣y(t)− Y (t)
∣∣4p)1/2

≤ ∆p(h(∆))2p. (4.8)

Substituting, (4.1)-(4.8) into (4.5), we obtain the desired assertion for E|R̃2(gi)|p. For to the same reason, the other
terms in (4.4) are proven. �

Here, following two theorems, we show that if Assumptions 1, 2, and 3 hold, the associated split-step truncated
Milstein method, defined as (3.10), has a strong rate of convergence close to one in the mean square sense. In
this context, we define e(t) := x(t) − y(t) for 0 ≤ t ≤ T as the global error. Moreover, for each real number
R > |x0|+ ∆∗|f(x0)| we consider the stopping times τR, ρR and γR defined in (2.11) and (3.35).

Theorem 4.2. Consider any given real number R > |x0| + ∆∗|f(x0)|. If the coefficients of SED (2.1) satisfy As-
sumptions 1-3, then for any step size ∆ ∈ (0,∆∗] with property µ−1(h(∆)) ≥ R and for any p ≥ 1

E(|e(t ∧ θ)|2p) ≤ C max{∆p+1,∆2p(h(∆))4p}, (4.9)

where θ := τR ∧ ρR ∧ γR.

Proof. We try to estimate e(t∧ θ) for the approximation solution y(t). In this regard, from relations (2.1) and (3.10),
we can write

e(t ∧ θ) =

∫ t∧θ

0

(
f(x(s)− f̃(Y (s))

)
ds+

m∑
i=1

∫ t∧θ

0

(
gi(x(s))− g̃j(Y (s))−

m∑
j=1

Lj g̃i(Y (s))∆Bj(s)
)
dBi(s).

(4.10)

Following the similar approach presented in Theorem 3.4 in [9], we can use the Itô formula to write for any 0 ≤ t ≤ T

E(|e(t ∧ θ|2p) = 2pE
∫ t∧θ

0

|e(s)|2p−2
〈
x(s)− y(s), f(x(s))− f̃(Y (s))

〉
ds

+ 2p

m∑
i=1

E
∫ t∧θ

0

|e(s)|2p−2 2p− 1

2

∣∣∣∣∣gi(x(s))− g̃i(Y (s))

−
m∑
j=1

Lj g̃i(Y (s))∆Bj(s)

∣∣∣∣∣
2

ds. (4.11)

In (4.11), the real values s have been placed at the interval [0, t∧θ], so |Y (s)|∨|Y (s)| < R. Given that µ−1(h(∆)) ≥ R,
we have |Y (s)| ∨ |Y (s)| < µ−1(h(∆)). Therefore, from (4.11) and (4.3), we can write

E(|e(t ∧ θ|2p) ≤ 2pE
∫ t∧θ

0

|e(s)|2p−2
(〈
x(s)− y(s), f(x(s))− f(y(s))

〉
+ (2p− 1)

m∑
j=1

∣∣∣gi(x(s))− gi(y(s))
∣∣∣2)ds+ 2pΓ (4.12)

+ 2p(2p− 1)

m∑
i=1

E
∫ t∧θ

0

|e(s)|2p−2
∣∣R̃2(gi)

∣∣2ds,
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in which Γ := E
∫ t∧θ

0
|e(s)|2p−2

〈
x(s) − y(s), f(y(s)) − f(Y (s))

〉
ds. Now, by applying Assumption 2 and the Young

inequality (3.27) we obtain

E(|e(t ∧ θ|2p) ≤ C
(
E
∫ t∧θ

0

|e(s)|2pds+

m∑
i=1

E
∫ t∧θ

0

(
|e(s)|2p +

∣∣R̃2(gi)
∣∣2p)ds)+2pΓ.

To approximate Γ, one can write with the help of the Young inequality (3.27) and the Hölder inequality

Γ ≤ CE
∫ t∧θ

0

(
|e(s)|2p +

∣∣〈x(s)− y(s), R̃1(f)
〉∣∣p)ds

+
2p−1

p
E
∫ t∧θ

0

∣∣∣〈x(s)− y(s), f ′(Y (s))
( m∑
j=1

∫ s

tks

gj(Y (s1))dBj(s1)
)〉∣∣∣pds

≤ CE
∫ t∧θ

0

(
|e(s)|2p + |R̃1(f)|2p

)
ds+

2p−1

p
J, (4.13)

in which

J := E
∫ t∧θ

0

∣∣∣〈x(s)− y(s), f ′(Y (s))
( m∑
j=1

∫ s

tks

gj(Y (s1))dBj(s1)
)〉∣∣∣pds. (4.14)

Here, ks is the greatest integer number such that tks ≤ s < tks+1. Therefore, it remains to estimate the last term in
(4.13). In this regard, by consider Jks := f ′(Y (s))

(∑m
j=1

∫ s
tks

gj(Y (s1))dBj(s1)
)

from Lemma 3.6, we have

E|Jks |2p = E

∣∣∣∣∣
m∑
j=1

∫ s

tks

f ′(Y (s))
(
gj(Y (s1))

)
dBj(s1)

∣∣∣∣∣
2p

(4.15)

≤ m2p−1
m∑
j=1

E
∣∣∣∫ s

tks

f ′(Y (s))
(
gj(Y (s1))

)
dBj(s1)

∣∣∣2p
≤ m2p−1(p(2p− 1))p∆(p−1)

m∑
j=1

E
∫ s

tks

∣∣∣f ′(Y (s))
(
gj(Y (s1))

)∣∣∣2pds
≤ m2p−1(p(2p− 1))p∆p

m∑
j=1

E
∣∣f ′(Yks)gj(Y ks)∣∣2p ≤ C∆p.

On the other hand, since tks ≤ s < tks+1, we have

x(s)− y(s) = (x(tks)− Yks) +

∫ s

tk

[
f(x(u)− f(x(tks))

]
du

− (s− tks)f(Yks) + (s− tks)f(x(tks))

+

m∑
i=1

∫ s

tk

[
gi(x(u))− gi(Y (u))−

m∑
j=1

Ljgi(Y (u))∆Bj(u)
]
dBi(u).

So with some simplifications, we can deduce

x(s)− y(s) =
(
x(tks)− Yks

)
+

∫ s

tks

[
f(x(u)− f(x(tks))

]
du+ βks

+

m∑
i=1

∫ s

tks

[
gi(x(u))− gi(y(u)) + R̃2(gi)

]
dBi(u), (4.16)

in which

βks := (s− tks)
(
f(x(tks))− f(Yks)

)
. (4.17)



CMDE Vol. 11, No. 4, 2023, pp. 676-695 689

Inserting the expression (4.16) into (4.14) gives

J ≤ 5p−1E
∫ t∧θ

0

∣∣〈∫ s

tks

[
f(x(u)− f(x(tks))

]
du, Jks〉

∣∣pds
+ 5p−1E

∫ t∧θ

0

∣∣〈 m∑
i=1

∫ s

tks

[
gi(x(u))− gi(y(u))

]
dBi(u), Jks〉

∣∣pds
+ 5p−1E

∫ t∧θ

0

∣∣〈 m∑
i=1

∫ s

tks

R̃2(gi)dB
i(u), Jks〉

∣∣pds+ E
∫ t∧θ

0

∣∣〈βks , Jks〉∣∣pds
+ 5p−1E

∫ t∧θ

0

∣∣〈x(tks)− Yks , Jks〉
∣∣pds

:= 5p−1(J1 + J2 + J3 + J4 + J5). (4.18)

For J1, we use the Hölder inequality and (4.15) and Lemma 3.5 in [32], to arrive at

J1 ≤ E
∫ t∧θ

0

(∣∣∣∫ s

tks

[
f(x(u))− f(x(tks))

]
du
∣∣∣p∣∣∣Jks∣∣∣p)ds

≤
∫ t∧θ

0

(
E
∣∣∣∫ s

tks

[
f(x(u))− f(x(tks))

]
du
∣∣∣2p)1/2(

E
∣∣Jks∣∣2p)1/2ds

≤ ∆
2p−1

2

∫ t∧θ

0

(
E
∫ s

tks

∣∣f(x(u))− f(x(tks))
∣∣2pdu)1/2(

E
∣∣Jks∣∣2p)1/2ds

≤ C∆
2p−1

2

∫ t∧θ

0

(∫ s

tks

∥∥f(x(u))− f(x(tks))
∥∥2p

L2p(Ω;Rd)
du
)1/2(

E
∣∣Jks ∣∣2p)1/2ds

≤ Cp,T∆2p. (4.19)

Concerning J2, we apply the Young inequality with ε > 0 that is

xy ≤ x2

2ε
+
εy2

2
. (4.20)

So, from (4.20) with ε = ∆p(h(∆))2p and the relation (2.5) with u = µ−1(h(∆)), we have

J2 ≤ E
∫ t∧θ

0

(∣∣∣ m∑
i=1

∫ s

tks

[
gi(x(u)− gi(y(u))

]
dBi(u)

∣∣∣p∣∣∣Jks∣∣∣p)ds
≤
∫ t∧θ

0

(Cp,T
2ε

m∑
i=1

E
∣∣∣∫ s

tks

[
gi(x(u)− gi(y(u))

]
dBi(u)

∣∣∣2p +
ε

2
E
∣∣Jks∣∣2p)ds

≤
∫ t∧θ

0

(
Cp,T

p(2p− 1)

2ε
∆p−1

m∑
i=1

E
∫ s

tks

∣∣gi(x(u)− gi(y(u))
∣∣2pdu+

ε

2
E
∣∣Jks ∣∣2p)ds

≤
∫ t∧θ

0

(
Cp,Tm

p(2p− 1)

2
sup

0≤u≤s
E
∣∣e(u)

∣∣2p +
∆p(h(∆))2p

2
E
∣∣Jks∣∣2p)ds

≤ Cp,T
∫ t∧θ

0

sup
0≤u≤s

E
∣∣e(u)

∣∣2pds+ Cp,T∆2p(h(∆))2p. (4.21)
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For J3, by using Hölder’s inequality, Lemma 4.1 and (4.15), we have

J3 ≤ E
∫ t∧θ

0

(∣∣∣ m∑
i=1

∫ s

tks

R̃2(gi)dB
i(u)

∣∣∣p∣∣∣Jks∣∣∣p)ds
≤
∫ t∧θ

0

(
E
∣∣∣ m∑
i=1

∫ s

tks

R̃2(gi)dB
i(u)

∣∣∣2p)1/2(
E
∣∣Jks∣∣2p)1/2ds

≤
∫ t∧θ

0

( m∑
i=1

E
∣∣∣∫ s

tks

R̃2(gi)dB
i(u)

∣∣∣2p)1/2(
E
∣∣Jks∣∣2p)1/2ds

≤
∫ t∧θ

0

(
(p(2p− 1))p∆p−1

m∑
i=1

E
∫ s

tks

∣∣R̃2(gi)
∣∣2pdu)1/2(

E
∣∣Jks∣∣2p)1/2ds

≤
∫ t∧θ

0

(
(p(2p− 1))pm∆3p(h(∆))4p

)1/2(
E
∣∣Jks∣∣2p)1/2ds ≤ C∆2p(h(∆))2p.

To approximate J4, we split it into two terms as below:

J4 ≤ E
∫ t∧θ

0

(∣∣βks∣∣p∣∣Jks∣∣p)ds =

kt∧θ−1∑
l=0

E
∫ tl+1

tl

(∣∣βl∣∣p∣∣Jl∣∣p)ds+ E
∫ t∧θ

kt∧θ

(∣∣βkt∧θ ∣∣p∣∣Jkt∧θ ∣∣p)ds
:= J41 + J42. (4.22)

Concerning J41, first, we use the Hölder inequality and the relations (4.15) and (2.5) with u = µ−1(h(∆)). Then, by
the Young inequality (4.20) with ε = 8× 10p−1, we have

J41 ≤
kt∧θ−1∑
l=0

∫ tl+1

tl

(
E
∣∣βl∣∣2p)1/2(E∣∣Jl∣∣2p)1/2ds

≤ C
kt∧θ−1∑
l=0

∫ tl+1

tl

∆
p
2

(
E
∣∣βl∣∣2p)1/2ds

≤ C
kt∧θ−1∑
l=0

∫ tl+1

tl

∆
3p
2 (h(∆))p

(
E
∣∣e(tl)∣∣2p)1/2ds

≤ ∆
p
4

(
sup

0≤u≤t∧θ
E
∣∣e(u)

∣∣2p)1/2(Cp,T∆p
)
≤ 5

8
× 10−p sup

0≤u≤t∧θ
E
∣∣e(u)

∣∣2p + C∆2p.

Following the same approach as in the estimation of J41, one can similarly arrive at

J42 ≤ E
(kt∧θ−1∑

l=0

∫ tl+1

tl

(∣∣βl∣∣p∣∣Jl∣∣p)ds+

∫ t∧θ

kt∧θ

(∣∣βkt∧θ ∣∣p∣∣Jkt∧θ ∣∣p)ds)
≤
∫ t∧θ

0

(
E
∣∣βks∣∣2p)1/2(E∣∣Jks∣∣2p)1/2ds ≤ C ∫ t∧θ

0

∆
p
2

(
E
∣∣βks∣∣2p)1/2ds

≤ C
∫ t∧θ

0

∆
3p
2 (h(∆))p

(
E
∣∣e(tks)∣∣2p)1/2ds

≤ ∆
p
4

(
sup

0≤u≤t∧θ
E
∣∣e(u)

∣∣2p)1/2(Cp,T∆p
)
≤ 5

8
× 10−p sup

0≤u≤t∧θ
E
∣∣e(u)

∣∣2p + C∆2p.
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Now, it remains to approximate J5. Similarly, we split J5 as below:

J5 ≤ E
∫ t∧θ

0

∣∣〈xtks − Yks , Jks〉∣∣pds =

kt∧θ−1∑
l=0

E
∫ tl+1

tl

∣∣〈xtl − Yl, Jl〉∣∣pds
+ E

∫ t∧θ

kt∧θ

∣∣〈xtkt∧θ − Ykt∧θ , Jkt∧θ〉∣∣pds := J51 + J52. (4.23)

By applying (4.15), the Hölder inequality and the Young inequality (4.20) with ε = 8× 10p−1, we obtain

J51 ≤
kt∧θ−1∑
l=0

∫ tl+1

tl

(
E
∣∣xtl − Yl∣∣2p)1/2(E∣∣Jl∣∣2p)1/2ds

≤
(

sup
0≤u≤t∧θ

E
∣∣e(u)

∣∣2p)1/2 kt∧θ−1∑
l=0

∫ tl+1

tl

(
E
∣∣Jl∣∣2p)1/2ds

≤ 5

8
× 10−p sup

0≤u≤t∧θ
E
∣∣e(u)

∣∣2p +
(
C

kt∧θ−1∑
l=0

∫ tl+1

tl

(
E
∣∣Jl∣∣2p)1/2ds)2

≤ 5

8
× 10−p sup

0≤u≤t∧θ
E
∣∣e(u)

∣∣2p + C

kt∧θ−1∑
l=0

∆

∫ tl+1

tl

E
∣∣Jl∣∣2pds

≤ 5

8
× 10−p sup

0≤u≤t∧θ
E
∣∣e(u)

∣∣2p + C∆p+1.

Finally, it results for J52, similarly as above, that

J52 ≤
∫ t∧θ

kt∧θ

(
E
∣∣xtkt∧θ − Ykt∧θ ∣∣2p)1/2(E∣∣Jkt∧θ ∣∣2p)1/2ds

≤
(

sup
0≤u≤t∧θ

E
∣∣e(u)

∣∣2p)1/2 ∫ t∧θ

kt∧θ

(
E
∣∣Jkt∧θ ∣∣2p)1/2ds

≤ 5

8
× 10−p sup

0≤u≤t∧θ
E
∣∣e(u)

∣∣2p + C∆p+2.

By inserting Ji for i = 1, . . . , 5 into (4.18) and then (4.13), we have

E(|e(t ∧ θ|2p) ≤ C
(
E
∫ t∧θ

0

(
|e(s)|2p + |R̃1(f)|2p

)
ds+

m∑
i=1

E
∫ t∧θ

0

∣∣R̃2(gi)
∣∣2pds)

+
1

2
sup

0≤u≤t∧θ
E
∣∣e(u)

∣∣2p + C max{∆p+1,∆2p(h(∆))4p}

≤ CE
∫ t∧θ

0

sup
0≤u≤s

E
∣∣e(u)

∣∣2pds+
1

2
sup

0≤u≤t∧θ
E
∣∣e(u)

∣∣2p
+ C max

{
∆p+1,∆2p(h(∆))4p

}
.

Therefore, we can conclude

sup
0≤u≤t∧θ

E
∣∣e(u)

∣∣2p ≤ C(E∫ t∧θ

0

sup
0≤u≤s

E
∣∣e(u)

∣∣2pds+ max
{

∆p+1,∆2p(h(∆))4p
})
,

where C is a positive constant independent of the step size ∆. By applying the Gronwall inequality, we see

sup
0≤u≤t∧θ

E
∣∣e(u)

∣∣2p ≤ C max
{

∆p+1,∆2p(h(∆))4p
}
.

�
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To prove the strong convergence rate of the split-step truncated method (3.10), we state the following theorem. It is
worth noting that in this context we adopt the idea of the proof from Theorem 2.1 in [9].

Theorem 4.3. Let the conditions of Assumptions 1 to 3 be satisfied, then there is also a positive real number ∆∗

satisfying (3.2). For any ∆ ∈ (0,∆∗] and q ∈ (1,+∞), let R
(q)
∆ :=

(
∆(h(∆))2

)−1/(q−1)
. If there exist 0 < δ ≤ ∆∗ and

q ∈ (1,+∞) such that

µ−1(h(∆)) ≥ R(q)
∆ , ∀∆ ∈ (0, δ], (4.24)

then, for sufficiently small ∆ ∈ (0,∆∗], there is a positive constant C independent of ∆ such that

E|x(T )− yN |2 ≤ C∆2(h(∆))4, (4.25)

for some N = T/∆ ∈ N.

Proof. The proof of this theorem is very similar to Theorem 2.1 in [9]. We choose q ∈ (1,+∞) and δ > 0 such that

the value R
(q)
∆ satisfies the relation (4.24). From now on, let ∆ ∈ (0, δ) be a fixed positive number. For this setting,

we have

E|x(T )− yN |2 = E
(
|x(T )− yN |2I{θ>T}

)
+ E

(
|x(T )− yN |2I{θ≤T}

)
:= Υ1 + Υ2. (4.26)

By applying Theorem 4.2 for p = 1, we obtain

Υ1 ≤ C∆2(h(∆))4. (4.27)

Concerning, Υ2, we use the Young inequality that is

x2y ≤ ε

q
x2q +

q − 1

qε1/(q−1)
yq/(q−1), ∀q ∈ (1,∞), (4.28)

for any positive ε, see [9] for more details. Therefore, for any ε > 0 and q > 1, we have

Υ2 ≤
ε

q
E
(
|x(T )− yN |2q

)
+

q − 1

qε1/(q−1)
P(θ

R
(q)
∆

≤ T ). (4.29)

Due to Theorem 2.1 and Lemma 3.4, we can find constant C independent of ∆ such that

E
(
|x(T )− yN |2q

)
≤ C. (4.30)

On the other hand, by applying Remark 2.3 and Lemma 3.7, we have

P(θ
R

(q)
∆

≤ T ) ≤ P(τ
R

(q)
∆

≤ T ) + P(γ
R

(q)
∆

≤ T ) + P(ρ
R

(q)
∆

≤ T ) ≤ 3K

(R
(q)
∆ )2q

. (4.31)

By setting ε = ∆2(h(∆))4 in (4.29), from relations (4.30) and (4.31), we can conclude

Υ2 ≤ C∆2(h(∆))4, (4.32)

for some constant C independent of ∆. Inserting (4.27) and (4.32) into (4.26) complets the proof. �

5. Numerical results

In this section, we show the efficiency of the proposed method in terms of accuracy and stability. We also numerically
compare the split-step truncated Milstein method (3.10) with the method proposed by Guo et al [9]. Accordingly,
we consider an example of a strongly nonlinear equation and compute the root mean square error of approximation
(RMSE) for a given step size ∆.

Example 5.1. Consider the scalar nonlinear Itô SDE with a one-dimensional Wiener process

dx(t) = (x(t)− x5(t))dt+ x2(t)dB(t), t ≥ 0, x(0) = 1. (5.1)
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Figure 1. The RMSE as a function of ∆ to approximate Example 5.1 at time T = 2.

Guo and et al. in [9] considered the SDE (5.1) as a test problem where the linear growth condition is violated.
They show that Assumptions 1-3 are satisfied with r = 4. Concerning (2.5), it is clear

sup
0<|x|∨|y|<u

|f(x)− f(y)|
|x− y|

∨ |g(x)− g(y)|
|x− y|

≤ (5u4 + 1). (5.2)

Moreover, we have

sup
|x|<u

(
|f(x)| ∨ |g(x)| ∨ |g′(x)|

)
≤ u5 ≤ 3u5, (5.3)

for any u ≥ 2. According to (5.2) and (5.3), we choose µ(u) = 3u5. On the other hand, for a given ε ∈ (0, 0.2), we

consider ∆∗ = exp(− ln(3)
0.2−ε ) and define h(∆) = 3∆−ε for ∆ ∈ (0,∆∗). For this setting (3.2) is fulfilled. About (4.24),

for any ε ∈ (0, 0.2), we choose q ≥ −9 + 5
ε , which implies(

1 +
10

q − 1

)
ε ln(∆) ≤ 5

q − 1
ln(∆) +

10

q − 1
ln(3), ∀∆ ∈ (0,∆∗). (5.4)

Therefore, using elementary calculations we can obtain

3∆−ε ≥ 3
((

32∆1−2ε
) −1
q−1

)5

. (5.5)

So, the property (4.25) in Theorem 4.3 is fulfilled. Therefore, for any ε ∈ (0, 0.2), we can deduce

E|x(T )− yN |2 ≤ 3CT∆2−4ε, ∆ ∈ (0,∆∗), (5.6)

with N = T/∆ ∈ N.
To show the efficiency of the split-step method in terms of stability and accuracy, in the following we calculate the

RMSE as a function of the step size ∆ on the log-log scale in Table 1 and Figure 1, respectively. Since there is no
explicit solution for (5.1), we search for a numerical solution with the small step size ∆ = 2−18 using the implicit
Milstein-Taylor method [29] and use it as a reference solution. We also use the mean of 5000 independent realizations
to approximate the expected value at the final time T. In Table 1, we compute the RMSE of the new method (3.10)
and the method in [9] for step size ∆ ∈ {2−7, . . . , 2−10} with ε = 0.1 at the final time T = 2. In this table, we indicate
the value of the mean square error by ”unst” when a method becomes unstable for a certain value of the step size ∆.

From Table 1 we can deduce that the new method is stable at a step size of ∆ = 2−7, while the truncated Milstein
method [9] is mean square stable for ∆ ≤ 2−9. From Table 1, it can be seen that the new method has better properties
in terms of accuracy and stability compared to the truncated Milstein method [9]. In Figure 1, the RMSE is plotted
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Table 1. The RMSE with ε = 0.1 for Example 5.1 at the time T = 2.

Step size The new method Truncated Milstien method [9]
2−7 7.79× 10−2 unst.
2−8 2.47× 10−2 unst.
2−9 4.72× 10−3 2.19× 10−2

2−10 2.26× 10−3 3.53× 10−3

as a function of the step size ∆. From this figure, it can be seen that the convergence rate of the new method is
very close to one, as expected. Moreover, the figure shows that the new proposed method is more accurate than the
method [9].

6. Conclusions

The present study is concerned with the numerical solution of a class of highly nonlinear stochastic differential
equations with commutative noise. We have successfully introduced an explicit split-step truncated Milstein method
for nonlinear SDEs under the non-global Lipschitz and superlinear growth coefficients. We obtained the moment
boundedness and the convergence of the numerical solution under some additional conditions. We proved that the
strong convergence rate of the new method can be arbitrarily close to one. Finally, we discussed the efficiency of the
present scheme in terms of stability and accuracy by solving an illustrative example.
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