- [1] A. Abdulle and A. Blumenthal, Stabilized multilevel Monte Carlo method for stiff stochastic differential equations, J. Comput. Phys., 251 (2012), 445–460.
- [2] E. Buckwar and T. Sickenberger, A structural analysis of asymptotic mean-square stability for multi-dimensional linear stochastic differential systems, Applied. Numerical. Mathematics., 62(7) (2012), 842–859.
- [3] K. Burrage and T. Tian, Predictor-corrector methods of Runge-Kutta type for stochastic differential equations, SIAM J. Numer. Anal., 40(4) (2002), 1516–1537.
- [4] K. Burrage, P. M. Burrage, and T. Tian, Numerical methods for strong solutions of stochastic differential equa- tions: an overview , Proc. R. Soc. Lond. A., 460 (2004 ), 373–402.
- [5] S. Dereich, A. Neuenkirch, and L. Szpruch, An Euler-type method for the strong approximation of the Cox- Ingersoll-Ross process, Proc. R. Soc. A., 468 (2012), 1105–1115.
- [6] O. Farkhonderooz and D. Ahmadian, Mean-square stability of a constructed Third-order stochastic Runge–Kutta schemes for general stochastic differential equations, Comput. methods differ. equ., 10(3) (2022), 617-638.
- [7] A.S. Fatemion Aghda, S. M. Hosseini, and M. Tahmasebi, Analysis of non-negativity and convergence of solution of the balanced implicit method for the delay Cox-Ingersoll-Ross model , Appl. Numer. Math., 118 (2017), 249-265.
- [8] Q. Guo, W. Liu, X. Mao, and R. Yue, The partially truncated Euler-Maruyama method and its stability and boundedness, Appl. Numer. Math., 115 (2017), 235-251.
- [9] Q. Guo, W. Liu, X. Mao, and R. Yue, The truncated Milstein method for stochastic differential equations with commutative noise, J. Comput. Appl. Math, 338 (2018), 298–310.
- [10] A. Haghighi and A. R¨oßler, Split-step double balanced approximation methods for stiff stochastic differential equations, Int. J. Comput. Math., 96(5) (2019), 1030–1047.
- [11] A. Haghighi, S. M. Hosseini, and A. R¨oßler, Diagonally drift-implicit Runge-Kutta methods of strong order one for stiff stochastic differential systems, J. Comput. Appl. Math, 293 (2016), 82-93.
- [12] M. Hutzenthaler, A. Jentzen, and P. E. Kloeden, Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with non-globally Lipschitz continuous coefficients, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 467 (2011), 1563–1576.
- [13] M. Hutzenthaler, A. Jentzen, and P. E. Kloeden, Strong convergence of an explicit numerical method for SDEs with non-globally Lipschitz continuous coefficients, Ann. Appl. Probab. Eng. Sci., 4 (2012), 1611–1641.
- [14] D. J. Higham, X. Mao, and A. M. Stuart, Strong convergence of Euler-type methods for nonlinear stochastic differential equations, SIAM. J. Numer. Anal., 40(3) (2002), 1041–1063.
- [15] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Springer-Verlag, Berlin, 2002.
- [16] X. Li and G. Yin, Explicit Milstein schemes with truncation for nonlinear stochastic differential equations: Con- vergence and its rate, J. Comput. Appl. Math, 374 (2020), 112771.
- [17] J. Liao, W. Liu, and X. Wang, Truncated Milstein method for non-autonomous stochastic differential equations and its modification , J. Comput. Appl. Math., 402 (2022), 113817.
- [18] W. Liu and X. Mao, Strong convergence of the stopped Euler-Maruyama method for nonlinear stochastic differ- ential equations, Appl. Math. Comput., 223 (2013), 389–400.
- [19] F. Mahmoudi and M. Tahmasebi, The convergence of exponential Euler method for weighted fractional stochastic equations, Comput. methods differ. equ., 2 (2022), 538–548.
- [20] X. Mao Stochastic Differential Equations and Applications , second ed., Horwood, Chichester, 2002.
- [21] X. Mao and L. Szpruch, Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients, J. Comput. Appl. Math., 238 (2013), 14–28.
- [22] X. Mao, The truncated Euler-Maruyama method for stochastic differential equations , J. Comput. Appl. Math., 290 (2015), 370–384.
- [23] G. N. Milstein, Numerical Integration of Stochastic Differential Equations, Kluwer Academic, Dordrecht, 2002.
- [24] G. N. Milstein and M. V. Tretyakov, Stochastic Numerics for Mathematical Physics, Springer-Verlag, Berlin, 2004.
- [25] B. Øksendal, Stochastic Differential Equations, An Introduction With Applications, sixth ed., in: Universitext, Springer-Verlag, Berlin, 2003.
- [26] A. R¨oßler, Rooted tree analysis for order conditions of stochastic Runge-Kutta methods for the weak approximation of stochastic differential equations, Stochastic Anal. Appl., 24(1) (2006), 97–134.
- [27] A. R¨oßler, Runge-Kutta methods for the strong approximation of solutions of stochastic differential equations, SIAM J. Math. Anal., 48(3) (2010), 922–952.
- [28] S. Sabanis, A note on tamed Euler approximations, Electron. Comm. Probab., 18 (2013), 1–10.
- [29] T. Tian and K. Burrage, Implicit Taylor methods for stiff stochastic differential equations, Appl. Numer. Math., 38(1) (2001), 167–185.
- [30] P. Wang and Y. Li, Split-step forward methods for stochastic differential equations, J. Comput. Appl. Math., 233(10) (2010), 2641–2651.
- [31] D. J. Wilkinson, Stochastic Modelling for Systems Biology, Chapman and Hall/CRC, 2018.
- [32] X. Wang and S. Gan, The tamed Milstein method for commutative stochastic differential equations with non- globally Lipschitz continuous coefficients , J. Differ. Equations Appl., 19(3) (2013), 466–490.
- [33] W. Zhan, Q. Guo, and Y. Cong, The truncated Milstein method for super-linear stochastic differential equations with Markovian switching, Discrete. Continuous. Dyn. Syst. Ser. B., 27(7) (2022), 3663–3682.
|