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Abstract

..

In this study, firstly, the residual method, which was developed for initial value problems, is improved to find
unknown coefficients without requiring for any system solution. Later, the adaptation of improved residual method
is given to find approximate solutions of boundary value problems. Finally, the method improved and adapted for

boundary value problems is used to find both critical eigenvalue and eigenfunctions of the one-dimensional Bratu
problem. The most significant advantage of the method is finding approximate solutions of nonlinear problems
without any linearization or solving any system of equations. Error analysis of the adapted method is given and
an upper bound on the approximation error is derived for the eigenfunctions. The numerical results obtained are

compared with the theoretical findings. Comparisons and theoretical observations show that the improved and
adapted method is very convenient and successful in solving boundary value problems and eigenvalue problems
approximately with high accuracy.
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1. Introduction

Consider the following boundary value problem{
y′′ + λey = 0, 0 < x < 1,
y(0) = 0, y(1) = 0,

(1.1)

which is referred to as the one-dimensional Bratu problem. This nonlinear eigenvalue problem has known two-
bifurcated solution for λ < λc and only one solution for λ = λc, but no solution for λ > λc.

The Bratu problem{
∆u+ λeu = 0, Ω : {(x, y) ∈ 0 ≤ x ≤ 1, 0 ≤ y ≤ 1},
u = 0, ∂Ω,

(1.2)

is a nonlinear elliptical partial differential equation and comes out in a various fields such as the fuel ignition model
found in thermal combustion theory [8], the Chandrasekhar model of the expansion of the universe [7], chemical reactor
theory, and nanotechnology. The problem arises via the study of the solid fuel ignition model

vt = ∆v + λ(1− ϵv)mev/(1+ϵv)

v = 0, x ∈ ∂Ω,
(1.3)

where λ is a Frank-Kamanetskii parameter, v is a dimensionless temperature and 1/ϵ is the activation energy. Non-
trivial solutions of the Bratu problem (1.2) arise as steady-state solutions of the solid fuel ignition model within the
approximation ϵ ≤ 1. The brief history and the importance of the Bratu problem is given in [12] by Jacobsen and
Schmitt. The problem is also a nonlinear eigenvalue problem that is often used as a comparison tool for numerical
methods owing to the bifurcation nature of the solution for λ < λc. Various numerical techniques such as Taylor’s
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decomposition method [3], Mickens Finite difference scheme [5], the special case of Hermite interpolation technique
[13], the Taylor wavelets method [14], the collocation method based on Genocchi polynomials [10], modified pertur-
bation method [1], weighed residual method [15], iterative differential quadrature method [17], an iterative numerical
scheme based on the Newton-Raphson-Kantorovich Method [18], the successive differentiation method [19], Chebyshev
wavelet [20] have been adapted independently to overcome the Bratu model numerically.

In [6], the exact solution of one dimensional Bratu problem (1.1) is given as

y(x) = −2 ln

[
cosh((x− 1

2 )
θ
2 )

cosh( θ4 )

]
, (1.4)

where θ and λ satisfy

θ =
√
2λ cosh

(
θ

4

)
. (1.5)

Equation (1.5) has two solutions for 0 < λ < λc, only one solution for λ = λc which is called critical eigenvalue, no
solution for λ > λc. The mentioned critical eigenvalue λc solves

1 =
√

2λc sinh

(
θc
4

)
1

4
. (1.6)

From (1.5) and (1.6), one may obtain the following

θ/4 = coth(θ/4) and θc = 4.798714561030. (1.7)

As a result, from (1.6), the exact value of critical eigenvalue λc is evaluated as

λc =
8

sinh2(θc/4)
= 3.51383071912516.

In this work, the residual method is improved. It is based on the construction of the approximate solution of the
differential equation using Bezier curves which are used in various studies, such as, [4, 9, 11]. We also propose
the improved residual method to approximate the critical eigenvalue and eigenfunctions of the Bratu problem. The
residual method was first developed in [2] to approximate initial value problems. In the method, approximate solutions
are written as Bezier curves. Then, the unknown control points are calculated from the system that is encountered
by minimizing the Taylor’s series expansion of the residual function at certain points. In this study, it is aimed to
calculate the control points without the need for any system solution. For this purpose, an explicit formula for control
points is obtained. Then the improved method is adapted to boundary value problems and used to find approximate
eigenfunctions and critical eigenvalue of the Bratu problem. The most significant advantage of the method is to find
approximate results of nonlinear problems without using any linearization or solving any system of equations.

A brief description of the proposed method for initial value problems, improvement and adaptation of the method
for boundary value problems is given in section 2. The computation of eigenvalues and eigenfunctions is given in
section 3. The upper bound of the error caused by the proposed method for boundary value problems is given in
section 4. Numerical results and comparisons for different λ values are presented in section 5. In conclusion, we
summarize our study and present our suggestions regarding future works.

2. Improved Residual Method for Boundary Value Problems

2.1. Improvement of residual method. In this section, we first give a brief description of the residual method
developed for initial value problems in [2]. Consider the non-linear initial value problems

y′′ = F (x, y, y′), (2.1)

with the initial conditions

y(a) = α, y′(a) = β, (2.2)

where F ∈ Cn−2[a, b]× C(D1)× C(D2), D1, and D2 are the closed intervals in R, α and β are finite constants and n
is the degree of Bézier curves.
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In the beginning, the following initial value problems for each subinterval Si are obtained as

y′′i (x) = F (x, yi(x), y
′
i(x)), x ∈ Si = [ai−1, ai], for 1 ≤ i ≤ N, (2.3)

and y1(a0) = α, y′1(a0) = β, (2.4)

yi(ai−1) = yi−1(ai−1), y′i(ai−1) = y′i−1(ai−1), (2.5)

for 2 ≤ i ≤ N , by dividing the interval [a, b] into N equally spaced subintervals Si = [ai−1, ai], where ai = a + ih,
i = 0, 1, ..., N, h = (b − a)/N and N is a positive integer. It can be seen from (2.5) that the derivative of piecewise
function created by the solutions obtained in all sub-intervals and itself are continuous. The mentioned funtion will
be the solution of the initial value problem (2.1) and (2.2), since it satifies both the equation and conditions of the
initial value problem.

In each subsequent interval Si, the approximate solution is constructed as nth degree Bézier curve

ui(x) =

n∑
j=0

cijB
n
j (x; [ai−1, ai]) , (2.6)

where

Bn
j (x; [ai−1, ai]) =

(
n

j

)
1

hn
(x− ai−1)

j(ai − x)n−j ,

are the Bernstein polynomials and cij are (n + 1) unknown control points over each subinterval Si to be determined
later. Since ui(x) are the approximate solutions of yi(x), they must satisfy the initial conditions (2.4) and (2.5), that
is,

u1(a0) = α, u′
1(a0) = β, (2.7)

ui(ai−1) = ui−1(ai−1), u′
i(ai−1) = u′

i−1(ai−1), (2.8)

for 2 ≤ i ≤ N . From the properties of Bézier curves, equations (2.7) and (2.8) become

c10 = α, c11 = β
h

n
+ α,

ci0 = ci−1
n , ci1 = 2ci−1

n − ci−1
n−1,

(2.9)

for i = 2, . . . , N , which means we have (n− 1) unknown control points for each Si.
If we write the approximate solutions obtained in each sub-interval as a piecewise function as follows

u(x) =


u1(x), x ∈ S1,
u2(x), x ∈ S2,
...
uN (x), x ∈ SN ,

(2.10)

we get an approximate solution for the initial value problem (2.1) and (2.2).
When the approximate solutions (2.6) are substituted into the differential equation (2.3), for i = 1, . . . , N , we have

the piecewise residual function

R(x) = Ri(x), x ∈ Si, where Ri(x) = u′′
i (x)− F (x, ui(x), u

′
i(x)), x ∈ Si.
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The aim is to identify unknown control points cij that will make sufficiently differentiable residual function Ri(x)
minimum in Si. For this, the first (n − 1) terms in Taylor’s series expansion of Ri(x) at x = ai−1 are forced to be
zero. So, the unknown control points cij are obtained from

R
(k)
i (ai−1) = 0, for k = 0, . . . , n− 2, which yields (2.11)

R
(k)
i (ai−1) = u

(k+2)
i (ai−1)− F (k) (ai−1, ui(ai−1), u

′
i(ai−1)) = 0, k = 0, . . . , n− 2. (2.12)

From derivative property of Bézier curves at the end points, (2.12) becomes

n(n− 1) . . . (n− k − 1)

hk+2
∆k+2ci0 − F (k)

(
ai−1, c

i
0,

n

h
(ci1 − ci0)

)
= 0, (2.13)

where

F (k)(x, y, z) =
∂k

∂xk
F (x, y(x), z(x)) and ∆k+2ci0 =

k+2∑
j=0

(
k + 2

j

)
(−1)k+2−j cij .

The (n − 1) unknown control points are determined by solving linear system of equations (2.13) for k = 0, . . . , n − 2
in [2]. What has been mentioned so far in this subsection is a summary of the residual method developed in [2]. Now
we will discuss about the improvements made in the residual method in this study.

Equation (2.13) is obtained using endpoint property of Bézier curves and the control points are obtained forcing
(n − 1) terms of Taylor’s series expansion of residual function to be zero at the left endpoint of the subinterval Si.
Similarly, we repeat this process for the right endpoint to have the following linear system of equations

n(n− 1) . . . (n− k + 1)

hk
∆kcin−k − F (k−2)

(
ai, c

i
n,

n

h
(cin − cin−1)

)
= 0, (2.14)

where F (k)(x, y, z) =
∂k

∂xk
F (x, y(x), z(x)) and ∆kcin−k =

∑k
j=0

(
k
j

)
(−1)k−j cin−k+j . In this work, instead of solving

the control points from the linear system of equations as in [2], we formulate the control points cik explicitly in terms
of ci0 and ci1 or cin−1 and cin as in Theorem 2.1.

Theorem 2.1. Let n be the degree and cik be the control points of the Bézier curves (2.6) that are the approximate
solutions of (2.3) and (2.8) in interval Si and F (x, y, z) be the function given in (2.1), then

cik = kci1 − (k − 1)ci0 +
k∑

j=2

(
k
j

)
(n− j)!

n!
hjF (j−2)

(
ai−1, c

i
0,

n

h
(ci1 − ci0

)
), k = 2, 3, ..., n (2.15)

cik = (n− k)cin−1 − (n− k − 1)cin +

n−k∑
j=2

(−1)jhj

(
n− k

j

)
(n− j)!

n!
F (j−2)

(
ai, c

i
n,

n

h
(cin − cin−1)

)
, (2.16)

for k = 0, 1, ..., n− 2 and i = 1, 2, . . . , N, where F (k)(x, y(x), z(x)) =
∂k

∂xk
F (x, y(x), z(x)) and h is the stepsize.

Proof. To prove this theorem, first we prove the following equations by using some classical binomial identities.
i)

k∑
j=1

(
k

j − 1

)
(−1)k+1−j = −1, for any k ≥ 1. (2.17)
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ii)

k∑
j=m

(
k + 1
j

)(
j
m

)
(−1)k+1−j = −

(
k + 1
m

)
, for 0 ≤ m ≤ k. (2.18)

iii)

k∑
j=2

(−1)j
(
k − 1

j − 1

)
= 1, for any k > 2. (2.19)

iv)

k+2−p∑
j=2

(−1)j
(
k + 1

j − 1

)(
k + 2− j

p

)
=

(
k + 1

p

)
, for any p = 0, 1, ..., k. (2.20)

We prove equations (2.15) and (2.16) by induction on k. For k = 2 by using (2.13) and (2.14), we obtain

ci2 =
(n− 2)!

n!
h2F

(
ai−1, c

i
0,

n

h
(ci1 − ci0)

)
+ 2ci1 − ci0,

cin−2 = 2cin−1 − cin +

2∑
j=2

(−1)jhjF (j−2)

(
2

j

)
(n− j)!

n!
,

which show that given equatins hold for k = 2. By the induction hypothesis, we suppose that the equations hold for
k. Then we need to prove them for k + 1. The inductive steps are proved after huge calculations using the above
identities (2.17), (2.18), (2.19), and (2.20) respectively. �

2.2. Adaptation of improved residual method to boundary value problems. In this subsection, by following
the steps given in [16], we will give an adaptation of the improved residual method to the boundary value problems
in the form

y′′(x) = F (x, y(x), y′(x)), (2.21)

with the boundary conditions

y(a) = α, y(b) = β, (2.22)

where F ∈ Cn−2([a, b]×D1 ×D2), D1 and D2 are closed intervals in R, a, b, α, β are finite constants and n be the
degree of the Bézier curves.

Consider the following initial value problem

y′′ = F (x, y, y′), x ∈ [a, b],
y(a) = α, y′(a) = s,

(2.23)

where s is the root of equation

y(b; s)− β = 0. (2.24)

Thus, the solutions of the initial value problem (2.23) that satisfy the condition (2.24) are also the solutions of the
boundary value problem (2.21) and (2.22). In this subsection, it is aimed to find the approximate value s denoted by
s∗ and approximate solution u(x; s∗) of y(x; s) using improved residual method. To achieve this goal, the improved
residual method is applied to (2.23) with high degree approximating polynomial and large step-size h < 1. So, the
unknown coefficients cik of the approximate polynomial u(x; s) are computed in terms of the parameter s. In order to
be an approximate solution for the boundary value problem (2.21) and (2.22), the approximate solution u(x; s), which
is obtained depending on the parameter s, is substituted into (2.24),

u(x; s)− β = 0. (2.25)
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Equation (2.25) is solved approximately using Newton’s method with an initial value α. Thus, the approximate value
s∗ of s is found. Finally, the following perturbed initial value problem

y′′(x) = F (x, y(x), y′(x)), x ∈ [a, b],
y(a) = α y′(a) = s∗,

(2.26)

where s∗ is the approximate root of (2.25), is obtained. Now, the improved residual method can be applied to (2.26)
in order to find more accurate approximate solution of (2.21) and (2.22).

3. Computation of Eigenvalues and Eigenfunctions of the Bratu Problem by Improved Residual
Method

We divide the interval [0, 1] into two equal pieces [0,1/2] and [1/2,1] to find approximate critical eigenvalue and
initial slopes of Bratu problem. Then, we define the following problems

u′′
1 + λeu1 = 0, 0 < x < 1/2,
u1(0) = 0 and u′

1(0) = s1,
(3.1)

and

u′′
2 + λeu2 = 0, 1/2 < x < 1,
u2(1) = 0 and u′

2(1) = s2.
(3.2)

By the continuity of the approximate solution, we have

u1(1/2, s1) = u2(1/2, s2), (3.3)

which implies

c20 − c1n = 0, (3.4)

where c1n and c20 are the last and the first control points of u1(x, s1) and u2(x, s2), respectively.

Using c10 = 0, c11 =
s1
2n

and Theorem 2.1, we have

c1n =
s1
2

+

n∑
k=2

1

k!
(1/2)kF (k−2)(0, 0, s1). (3.5)

Similarly, using c2n = 0, c2n−1 = − s2
2n

and Theorem 2.1, we get

c20 = −s2
2

+

n∑
k=2

(−1)k
1

k!
(1/2)kF (k−2)(1, 0, s2). (3.6)

Substituting equations (3.5) and (3.6) into equation (3.4), we obtain

c20 − c1n = −s1 + s2
2

+

n∑
k=2

1

k!
(1/2)k

(
(−1)kF (k−2)(1, 0, s2)− F (k−2)(0, 0, s1)

)
= 0. (3.7)

For the difference in the above sum, we will use the following lemmas which are given and proved in [3].

Lemma 3.1. For j = 1, . . . , n, let F (j)(x, y, z) satisfies the recurrence relation

F (j)(x, y, z) = z
∂F (j−1)(x, y, z)

∂y
− λey

∂F (j−1)(x, y, z)

∂z
, (3.8)

with F (0)(x, y(x), z(x)) = −λey and z(x) = y′(x). Then

F (j−1)(x, y(x), z(x)) =

bj∑
i=0

(−1)i+1aj,iλ
i+1(ey)i+1zj−2i−1, (3.9)
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where bj = ⌊j − 1

2
⌋ and aj,i =


1, i = 0

(i+ 1)aj−1,i + (j − 2i)aj−1,i−1 1 ≤ i ≤ bj−1

0 else.

.

Lemma 3.2. If F (j)(x, y, z) satisfies (3.9), then for j = 2, . . . , n+ 1, the following relations hold:
(i)

(−1)kF (k−2)(1, 0, s2)− F (k−2)(0, 0, s1) = (s1 + s2)(−1)k
bk−1∑
i=0

(−1)i+1ak−1,iλ
i+1

( k−2i−3∑
j=0

(−1)jsk−2i−3−j
2 sj1

)
, (3.10)

for any fixed s1 and s2,
(ii)

(−1)kF (k−1)(1, 0, s1)− F (k−1)(0, 0, s2) = −2F (k−1)(0, 0, s2), for s2 = −s1. (3.11)

So (3.7) becomes

c20 − c1n = −s1 + s2
2

+ (s1 + s2)×
n∑

k=2

1

k!
(1/2)k

(
−1)k

bk−1∑
i=0

(−1)i+1ak−1,iλ
i+1

[ k−2i−3∑
j=0

(−1)jsk−2i−3−j
2 sj1

])
,

which yields

c20 − c1n = −(s1 + s2)×
(
1

2
+

n∑
k=2

1

k!
(1/2)k(−1)k−1

bk−1∑
i=0

(−1)i+1ak−1,iλ
i+1

[ k−2i−3∑
j=0

(−1)jsk−2i−3−j
2 sj1

])
.

Therefore to satisfy the equation (3.4) for all n, we must have s1 + s2 = 0 that is;

s1 = −s2. (3.12)

To satisfy the continuity of the first derivative of the approximate solution, we have

u′
1(1/2) = u′

2(1/2),

which implies that

c1n − c1n−1 = c21 − c20. (3.13)

We need to compute c1n−1 and c21 by using s1 = −s2, (3.11) and Theorem 2.1 for c1n−1 and c21. Thus equation (3.13)
becomes

s1 +
n−1∑
k=1

( 1
k!

)
(1/2)k+1(2F (k−1)(0, 0, s1)) = 0. (3.14)

We name the left-hand side of (3.14) as

G(s1, λ) = s1 +

n−1∑
k=1

( 1
k!

)
(1/2)kF (k−1)(0, 0, s1). (3.15)

Drawing the implicit equation G(s1, λ) = 0 gives Figure 1 which demonstrates that λ has a maximum value. In order
to find the maximum value, the following equation must be satisfied

dλ

ds1
= −∂G/∂s1

∂G/∂λ
= 0, that is

∂G

∂s1
= 0.

The nonlinear equations

G(s1, λ) = 0, and
∂G

∂s1
= 0,
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8

s1

λ

Figure 1. Graph of the equation G(s1, λ) = 0.

are solved approximately by Newton’s method, so the critical eigenvalue λc = 3.51383 and the corresponding initial
value s1 ≃ y′(0) are found approximately.

Table 1. The approximate initial slopes s11 and s21 corresponding to various λ ≤ λc obtained from
G(s1, λ) = 0

λ s11 s21
0.5 0.261277 13.008
1 0.549353 10.8467
2 1.24822 8.26876
3 2.3196 6.10338
3.513830719225065 4. -

From Figure 1 and Table 1, it can be seen that there isn’t any s1 for λ > λc, there is a unique solution corresponding
to the initial value s11 = s1 for λ = λc, and there are two solutions corresponding to the initial values s11 and s21 for
λ < λc as in the theoretical knowledge of the Bratu problem.

The approximate initial slopes of the Bratu problem for the corresponding eigenvalues λ ≤ λc are given in Table 1.

4. Error Analysis of Improved Residual Method

In this section, using some lemmas and theorems from [2, 3, 16], we emphasize that to use approximate value for
initial slope does not change order of convergence of the improved residual method. At the end of this section, we give
an upper bound for the error |y(x, s)− u(x, s∗)|, where y(x, s) represents the exact solution of the Bratu problem and
u(x, s∗) is the corresponding approximate solution obtained using the improved residual mathod.

Lemma 4.1. For j = 1, . . . , n, let F (j)(y, z) satisfies the recurrence relation

F (j)(y, z) = z
∂F (j−1)(y, z)

∂y
− λey

∂F (j−1)(y, z)

∂z
, (4.1)

with F (0)(y(x), z(x)) = −λey and z(x) = y′(x). Then

|F (j)(y(x), z(x))| ≤ ξM j+1−bj+1
1

|M − 1|
, (4.2)

where M = max(y,z)∈D{|F (0)(y, z)|, |z|}, D is 2−dimensional box in R2 and ξ = max{aj,i}.

Proof of this lemma is given in [3] in the proof of Lemma 2.
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Lemma 4.2. Let the function F (x, v, z) in (2.21) satisfy 0 < ∂F
∂v < L1

for some positive constant L1. Then

|s∗ − y′(a)| ≤ K̃hn, (4.3)

where K̃ is a positive constant, y is the exact solution of the boundary value problem (2.21) and (2.22), s∗ is the
approximate root of (2.25) and h is the step size of the improved residual method.

This lemma can be proved using Theorem A.2.1, Lemma A.2.2, Theorem A.2.3, and Theorem A.2.4 given in [16].
Before giving the error bound of the improved residual method, we define the following initial value problems

y′′1,2 + λey1,2 = 0, 0 < x < 1, (4.4)

with the the conditions

y1(0) = 0, y′1(0) = s, (4.5)

and

y2(0) = 0, y′2(0) = s∗, (4.6)

where s∗ is the approximate value of s with the condition (4.3).
The proofs of the following lemma and theorem are given in [2].

Lemma 4.3. Let y1(x) be the exact solution of (4.4)-(4.5) and u1(x) be the approximate solution of (4.4)-(4.6) on

x ∈ [0, h] with |s− s∗| ≤ K̃hn, where s∗ is the approximate root of (2.25) and K̃ is a positive constant. Then

|y1(x)− u1(x)| ≤ K̃hn+1 +O(hn+2), (4.7)

and

|y′1(x)− u′
1(x)| ≤ (n+ 1)Khn +O(hn+1), (4.8)

where K = K̃ +K, K =
1

(n+ 1)!
ξ
M (n/2)+1

|M − 1|
.

Theorem 4.4. Let y(x) be the exact solution of the second order non-linear boundary value problem (1.1), and u(x; s∗)
be the nth degree approximate solution of (4.4)-(4.6), then

|y(x)− u(x; s∗)| ≤ Mhn−1, x ∈ [a, b], (4.9)

where s∗ is the approximate root of (2.25) with the condition (4.3), M = K(n+ 1) and K is defined in Lemma 4.3.

5. Numerical Results

The improved residual method is applied to the one dimensional Bratu Problem. In this section, we give graphs
of the errors of the obtained numerical results. We also give the tables of the maximum error moduli and observed
orders of the errors. From tables and figures, it can be seen that proposed method has high order accuracy for large
step size. It can be also seen that the obtained numerical orders are well confirmed with the theoretical findings.

The observed orders are computed using the following formula

ord(h) =
log eh

eh/2

log 2
, (5.1)

where eh and eh/2 are the maximum error moduli of the global errors when the problem is solved with stepsize h and
h/2, respectively.
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Table 2. Maximum error moduli and observed errors for λ = 1 and s11 = 0.549353.

n=2 n=3 n=4 n=5
N=8 2.96128×10−3 2.6025×10−4 1.48175×10−5 5.06533 ×10−7

N=16 1.49719×10−3 7.17721×10−5 1.93077×10−6 3.96614×10−8

N=32 7.50268×10−4 1.8823×10−5 2.45018×10−7 2.52492 ×10−9

Observed Orders
ord(1/8) 0.983959 1.8584 2.94005 3.67485
ord(1/16) 0.996781 1.93092 2.97822 3.97343

0.0 0.2 0.4 0.6 0.8 1.0

- 0.000015

- 0.000010

- 5.×10- 6

0.000000

N=8

N=16

N=32

Figure 2. Errors for s11 when λ = 1.

Table 3. Maximum error moduli and observed errors for λ = 1 and s21 = 10.8466.

n=2 n=3 n=4 n=5
N=8 0.433665 0.0839156 5.10122×10−3 3.48684×10−3

N=16 0.226312 0.0209262 6.19774×10−4 4.87454×10−4

N=32 0.113062 0.00491807 5.83269×10−5 6.85824×10−5

Observed Orders
ord(1/8) 0.938268 2.00362 3.04103 2.83858
ord(1/16) 1.0012 2.08915 3.40951 2.82936

Table 4. Maximum error moduli and observed errors for λ = 3 and s11 = 2.31960.

n=2 n=3 n=4 n=5
N=8 0.0453978 9.03418×10−4 6.26397×10−4 4.27077×10−5

N=16 0.022926 3.56031×10−4 8.81698×10−5 2.2744×10−6

N=32 0.0114629 1.07455×10−4 1.1604×10−5 1.16448×10−7

Observed Orders
ord(1/8) 0.985636 1.34339 2.82872 4.23094
ord(1/16) 1.00002 1.72826 2.92566 4.28772
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Figure 3. Errors for s21 when λ = 1.
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Figure 4. Errors for s11 when λ = 3.

Table 5. Maximum error moduli and observed errors for λ = 3 and s21 = 6.10338.

n=2 n=3 n=4 n=5
N=8 0.218647 0.0204631 2.19945×10−3 1.07686×10−3

N=16 0.111056 0.00448602 4.82462×10−4 7.73086×10−5

N=32 0.0553462 0.00101242 7.34435×10−5 4.73904×10−6

Observed Orders
ord(1/8) 0.977321 2.18951 2.18865 3.80006
ord(1/16) 1.00473 2.14763 2.71571 4.02796
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Figure 5. Errors for s21 when λ = 3.

Table 6. Maximum error moduli and observed errors for λ = 3.513830719 and s = 4

n=2 n=3 n=4 n=5
N=8 0.11534 4.95501×10−3 1.69011×10−3 3.20816×10−4

N=16 0.0583163 1.12227×10−3 2.68653×10−4 2.02561×10−5

N=32 0.0291081 2.66845×10−4 3.71078×10−5 1.23786×10−6

Observed Orders
ord(1/8) 0.983921 2.14247 2.6533 3.98532
ord(1/16) 1.00248 2.07235 2.85595 4.03244
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Figure 6. Errors for λc = 3.513830719.

6. CONCLUSION

In this work, residual method is improved to find approximate solutions of boundary value problems. The improved
residual method is applied to solve one-dimensional Bratu problem numerically. The obtained numerical results are
compared with the theoretical findings. Comparisons and theoretical observations show that the improved and adapted
method is very convenient and successful in solving boundary value problems and eigenvalue problems approximately
with high accuracy. The proposed method can be applied to singularly perturbed Sturm-Liouville eigenvalue problems.
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