تعداد نشریات | 44 |
تعداد شمارهها | 1,302 |
تعداد مقالات | 16,017 |
تعداد مشاهده مقاله | 52,485,166 |
تعداد دریافت فایل اصل مقاله | 15,212,919 |
اثر تغییر اقلیم بر نوسانات رواناب سطحی حوضه ی آبریز رودخانه ارس. | ||
هیدروژئومورفولوژی | ||
دوره 9، شماره 33، دی 1401، صفحه 85-61 اصل مقاله (1.52 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/hyd.2022.51870.1643 | ||
نویسندگان | ||
رضا آقایاری سامیان1؛ علی محمد خورشیددوست* 2؛ سعید جهانبخش اصل3؛ آیدا حسینی بقانام4 | ||
1دانشجوی دکتری آب و هواشناسی دانشگاه تبریز، تبریز، ایران | ||
2استاد گروه آب و هواشناسی دانشکده علوم محیطی و برنامه ریزی | ||
3استاد گروه آب و هواشناسی دانشگاه تبریز، تبریز، ایران | ||
4استادیار گروه عمران دانشگاه تبریز، تبریز، ایران | ||
چکیده | ||
یکی از مهمترین اثرات تغییر اقلیم تشدید چرخه هیدرولوژیکی میباشد که موجب تغییر میزان دما، تبخیر و تعرق و تغییر الگوی بارش میشود. پژوهش حاضر باهدف پیشبینی تغییرات دما، بارش و ارزیابی تأثیرات تغییر اقلیم بر وضعیت روانابهای سطحی حوضه آبریز ارس واقع در شمال غرب ایران صورت گرفت. شبیهسازی شرایط اقلیمی در محیط نرمافزار LARS-WG تحت سناریو RCP8.5 انجام شد و در محیط نرمافزار اکسل مورد تجزیه و تحلیل قرار گرفت. با استفاده از مدل تجربی ترنت وایت اصلاحشده میزان تبخیر و تعرق پتانسیل برای دو دوره مشاهداتی و شبیهسازی برآورد گردید. جهت اطمینان از صحت سنجی مدل از شاخصهای خطا سنجی میانگین ﻣﺠﺬور ﻣﺮﺑﻌﺎت ﺧﻄﺎ (RMSE)، و ضریب تعیین (R2) و ضریب کارایی نش - ساتکلیف (ENS) نیز استفاده شد، همچنین مدلسازی تغییرات رواناب سطحی در محیط نرمافزار GIS و افزونه SWAT انجام شد و پس از تشکیل واحدهای هیدرولوژیکی (HRU) جهت واسنجی و اعتبارسنجی مدل شرایط پایه برای تغییرات روانابهای سطحی انتخاب گردید و برای ایستگاههای هیدرومتری اعتبارسنجی صورت گرفت. نتایج پژوهش نشان میدهد با مدلسازی دادههای اقلیمی طی دوره شبیهسازی میزان دما و تبخیر و تعرق افزایش خواهد یافت و در مقابل میزان نزولات جوی کاهش اتفاق افتاده و رواناب سطحی کاهش پیدا میکند. همچنین نتایج صحتسنجی برای دادههای اقلیمی نشان داد که دقت مدل در ایستگاههای منتخب موردبررسی بالا بوده است و برای پارامتر بارش به دلیل ماهیت ناپیوسته آن، همبستگی بین دادهی کمتر از پارامتر دما و متفاوت میباشد. نتایج مدلسازی هیدرومتری حوضهها نشان داد که مقدار نش – ساتکلیف به مقدار 1 نزدیک بوده و ضریب همبستگی بین دادهها 99/0 میباشد که نشاندهنده کارایی بالایی مدل جهت شبیهسازی و برآورد تغییرات اقلیم و اثرات آن بر میزان روانابهای سطحی میباشد. | ||
کلیدواژهها | ||
تغییراقلیم؛ رواناب سطحی؛ SWAT؛ حوزه آبریز ارس؛ شمال غرب ایران | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Ahmadi, H., Falah Qalhari, G., & Bagideh, M. (2018). Forecasting the effects of climate change on seasonal precipitation in cold regions of Iran based on radiative forcing (RCP) scenarios. Journal of Earth and Space Physics, 45(1), 177-196. Arnold, J.G., Srinivasan, P., Muttiah, R.S., & Williams, J.R. (1998). Large area hydrologic modelling and assessment part I. model development. Journal of the American Water Resources Association, 34, 73-89. doi: 10.1111/j.1752-1688.1998.tb05961.x Babaian, A., NajafiNik, Z., ZabulAbbasi, F., HabibiNokhandan, M., Adab, H., & Malbousi, S. (2009). Evaluation of the country's climate change in the period of 2010-2039 using exponential microscale data of ECHO-G atmospheric general circulation model. Journal of Geography and Development, 16(1), 135-152. Babaian, I., Zarghami, M., Koohi, M., Babaian, O., Karimian, M., & Modirian, R. (2014). Investigation of water resources behavior of Qaraqoom basin under climate change conditions (Case study: Dargaz sub-basin). Journal of water and soil, 27(5), 907-918. Barrow, E., Hulme, M., & Semenov, M. (1996). Effect of using different methods in the construction of climate change scenarios: examples from Europe. Journal of Climate Research, 7(3), 195-211. doi: 10.3354/cr007195 Chen, H., Xu, C.Y., & Guo, S. (2012). Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff. Journal of hydrology, 434, 36-45. doi:10.1016/j.jhydrol.2012.02.040 Chisanga, C.B., Phiri, E., & Chinene, V.R. (2017). Climate change impact on maize (Zea mays L.) yield using crop simulation and statistical downscaling models: A review. Journal of Scientific Research and Essays, 12(18), 167-187. doi: 10.5897/SRE2017.6521 Conani, Z., Ildermi, A., Zinivand, H., & Nouri, H. (2021). Impact of climate change on runoff of Silakhor-Rahimabad Basin in Lorestan. Journal of Hydrogeomorphology, 7(25), 1-17. Dastorani, M., & Yazdan Panah Gharaei, F. (2020). Investigation of rainfall and discharge trends in Aras catchment. Journal of Rainwater catchment systems, 8(24), 25-34. De Amorim, P., Barfus, K., Weissand, H., & Bernhofer, C. (2014). Trend analysis and uncertainties of mean surface air temperature, precipitation and extreme indices in CMIP3 GCMs in Distrito Federal, Brazil. Journal of Environmental earth sciences, 72(12), 4817-4833. doi: 10.1007/s12665-014-3301-y Dehghani, M., Kavian, A., Habibnejad Roshan, M., Ghorbani, M., & Jafarian Jolodar, Z. (2021). Uncertainty assessment of regional models of climate change and methods of error correction and forecasting of climate changes in Birjand city. Journal of Watershed Management, 12(10), 42-53. Eckhardt, K., & Ulbrich, U. (2003). Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. Journal of Hydrology, 284, 244–252. doi: 0.1016/j.jhydrol.2003.08.005 Farmanbar, Z., Delavar, M., & Imani Amirabadi, S. (2018). The Effects of Climate Change on Water Resources and Agricultural Systems in the Context of Regional Risk Assessment (Case Study: Lake Zarebar Basin). Journal of Iran-Water Resources Research, 13(4), 74-88. Fatehi, Z., & Shahoui, S. (2020). Application of SWAT model in simulation of monthly runoff, Lake Urmia watershed in Kurdistan province. Journal of Environment and Water Engineering, 6 (3), 294-304. Farzaneh, M.R., Eslamian, S., Samadi, S.Z., & Akbarpour, A. (2012). An appropriate general circulation model (GCM) to investigate climate change impac. International Journal of Hydrology Science and Technology, 2(1), 34-47. Fowler, H.J., Blenkinsop, S., & Tebaldi, C. (2007). Linking climate change modeling to impacts studies: recent advances in downscaling techniques for hydrological modeling. International journal of climatology, 27(12), 1547-1578. doi: 10.1002/joc.1556 Ghahrodi Tali, M. (2012). Necessity of Monitoring Border River Changes Case Study: Aras River (Dozal Basin). National Conference on Border Cities and Security; Challenges and Approaches. University of Sistan and Baluchestan. 996-1006. Grizzetti, B., Bouraoui, F., Granlund, K., Rekolainen, S., & Bidoglio, G. (2003). Modeling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model. Journal of Ecological Modelling, 169(1), 25-38. doi: S0304-3800(03)00198-4 Goodarzi, M., Salahi, B., & Hosseini, S.A. (2015). Investigating the effect of climate change on changes in surface runoff (case study: Lake Urmia catchment). Journal of Ecohydrology, 2(2), 175-189. Goodarzi, M., Salahi, B., & Hosseini, S.A. (2019). Evaluation of IHACRES model in simulation of river flow in Urmia Lake watershed. Journal of Water and Wastewater, 12(43), 1- 10. Goodarzi, M., & Chouba, S. (2019). Evaluation of exponential microscale methods in forecasting weather parameters under climate change conditions: A case study of Ardabil synoptic station. Journal of Watershed Science and Engineering, 13(45), 63-69. Gosling, S.N., Taylor, R.G., Arnell, N.W., & Todd, M.C. (2011). A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models. Hydrol. Earth Syst. Sc. 15, 279-294. doi: 10.5194/hess-15-279-2011 Hafezparast, M., Iraqi Nejad, S.H., & SharifAzari, S. (2015). Sustainability Criteria in Assessment of Integrated Water Resources Management In The Aras Basin Based on DPSIR Approach. Journal of Water and Soil Conservation, 22(2), 61-77. Hajimohammadi, M., Azizian, A., & Ghermezcheshmeh, B. (2018). Evaluation of the impact of climate change on runoff in Kan Watershed. Journal of Watershed Engineering and Management, 10(2), 144-156. Hardy, J.T. (2003). Climate Change: Causes, Effects, and Solutions. John Wiley& Sons, Ltd. 247 P. IPCC (2007). Summary for Policymarkers, in: Climate Change 2007. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B.Averyt, M.Tignor and H.L. Miller (eds.)(2007) Climate Change 2007: The PhysicalScience Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press,Cambridge, 1-18 Jahanbakhsh Asl, S., Khorshiddoust, A.M., Alinejad, M.H., & Pourasghr, F. (2016). Impact of climate change on precipitation and temperature by taking the uncertainty of models and climate scenarios (case study: Shahrchay basin in Urmia). Journal of Hydrogeomorphology, 3(7), 107-122. Jiang, F., Li, C.W., & Qian, Y. (2019). Can firms run away from climate-change risk? Evidence from the pricing of bank loans. Unpublished manuscript. Kamari, H., Zainali, E., Soltani, A., & Qadrifar, F. (2021). Evaluation of LARS-WG model in predicting meteorological parameters of climatic regions under cotton cultivation in Iran. Journal of Crop Production, 13(4), 27-40. Khazaei, M.R., & Khazaei, H. (2018). Uncertainty analysis of GCM models and emission scenarios in assessing the effect of climate change on monthly runoff in Bashar basin: Journal of Environmental Science and Technology Quarterly, 20(1), 29-40. Kilsby, C.G., Jones, P.D., Burton, A., Ford, A.C., Fowler, H.J., Harpham, C., James, P., Smith, A., & Wilby, R.L. (2007). A daily weather generator for use in climate change studies. The Journal of Environmental Modeling & Software, 22(12), 1705-1719. doi: 10.1016/j.envsoft.2007.02.005 Mansouri, B., Ahmadzadeh, H., MasahBowani, A., Merid, S., Delawar, M., & Lotfi, S. (2016). Investigating the effects of climate change on the water resources of Zarineh Rood basin using the SWAT model. Journal of Water and Soil, 28(6), 1191-1203. Masah-Bovani, A., & Morid, S. (2005). The effects of climate change on the flow of the Zaindeh Roud in Isfahan. Journal of Agricultural Sciences and Techniques and Natural Resources, 9(4), 17-27. Motamedvaziri, B., Ahmadi, M., Ahmadi, H., Moeini, A., & Zehtabian, G.R. (2020). Evaluation of the impact of climate change on extreme flows in Kan watershed. Journal of Soil and Water Resources Conservation, 9(2), 101-121. Naderi, M., Ilderami, A., Nouri, H., Aghabeigi Amin, S., & Zainivand, H. (2018). Investigating the impact of land use change and climate on watershed runoff using the SWAT model (case study: Green Basin). Journal of Hydrogeomorphology, 16(3), 61-79. Neitsch, S.L., Arnold, J.G. Kiniry, J.R., Williams, J.R., King, K.W. (2002). Soil and water assessment tool, user’s manual: version 2000. USDA Agricultural Research Service and Texas A & M Black land Research Center, Temple, Texas. 506p. Rasuli, A.R., RezaeiBanafsheh, M., Massah K., Khorshiddoust, A.M., & Ghermezcheshmeh, B. (2014). Investigation Impact of Morpho-Climatic Parameters on Aaccuracy of LARS-WG Model. Journal of Watershed Management Science, 8(24), 8-18. Rajaei, F., DahmardehBehrooz, R., Ahmadisharaf, E., Galalizadeh, S., Dudic, B., Spalevic, V., & Novicevic, R. (2021). Application of Integrated Watershed Management Measures to Minimize the Land Use Change Impacts. Water, 13, 2039. doi: 10.3390/w13152039 Rajaei, F., & Ghasemzadeh, S. (2022). Future climate assessment on the hydrology of the Gharesu watershed. Journal of Soil and water, 53(3), 501-511. Racsko, P., Szeidl, L., & Semenov, M.A. (1991). A Serial approach to local Stochastic Weather Models. The Journal of Ecological Modeling. (57): 27–41. doi: 10.1016/0304-3800(91)90053-4 Saleh, A., & Du, B. (2002). Evaluation of SWAT and HSPF within BASINS program for the upper North Bosque River watershed in central Texas. Transactions of the ASAE, 47(4), 1039-1049. doi:10.13031/2013.10387 Santhi, C., Arnold, J.G., Williams, J.R., Hauck, L.M., & Dugas, W.A. (2001). Application of a watershed model to evaluate management effects on point and nonpoint source pollution. Transactions of the ASAE, 44(6), 1559-1570. Samadi Naqab, S., Habibi Nokhandan, A., & Zabul Abbasi, R. (2011). Using the SDSM model for the microscale representation of GCM data of precipitation and temperature, a case study: station climate forecasts in Iran. Journal of Climatology Research, 1390(5), 57-68. Samadi, S.Z., Sagareswar, G., & Tajiki, M. (2010). Comparison of general circulation models: methodology for selecting the best GCM in Kermanshah Synoptic Station, Iran. International Journal of Global Warming, 2(4), 347-365. Semenov, M.A. (2007). Development of high-resolution UKCIP02-based climate change scenarios in the UK. The Journal of Agricultural and Forest Meteorology, 144(1-2), 127-138. doi: 10.1016/j.agrformet.2007.02.003 Semenov, M.A., & Stratonovitch, P. (2010). Use of multi-model ensembles from global climate models for assessment of climate change impacts. Journal of Climate research, 41(1), 1-14. doi: 10.3354/cr00836 Soori Nejad, A. (2020). Assessing the effects of climate change on renewable surface water resources in 30 catchments: Journal of Natural Geography Research, 52(3), 351-373. Solomon, S., Qin, D., Manning, M., Averyt, K., & Marquis, M. (2007). Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge university press. Soleimanipour, M. & Saraf, A. (2020). Evaluating the effects of climate change on the water resources of Lar watershed using the SWAT model and comparing its results with Bayesian networks and hybrid intelligent models. Journal of Natural Geography, 12(50), 61-79. Su, F., Duan, X., Chen, D., Hao, Z., & Cuo, L. (2013). Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. Journal of Climate, 26(10), 3187-3208. doi: 10.1175/JCLI-D-12-00321.1 Talebi, S. & Parvishi, A. (2019). Qualitative assessment of Aras river using IRWQIsc index upstream of Aras Dam lake. Journal of Environmental Science Studies, 4(4), 2003-2010. Tavousi, T., Zahraei, A., & Khosravi, M. (2015). Simulating the climate changes of Sistan and Baluchistan province by using the data of the General Circulation Model (GCM) for the climate period (2009-2040). Journal of Geographical Research, 30(118), 185-206. Theme, M.J., Gobiet, A., & Heinrich, G. (2012). Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Journal of Climatic Change, 112(2), 449-468. Towler, E., Pai Mazumder, D., & Holland, G. (2017). A framework for investigating large-scale patterns as an alternative to precipitation for downscaling to local drought. Journal of Climate Dynamics, 48(3- 4), 881-892. doi: 10.1007/s00382-016-3116-5 USEPA. (2004). Our Built and Natural Environments: A Technical Review of the Interactions between Land Use, Transportation and Environmental Quality, p.4. Wilby, R.L., & Harris, I. (2006). A framework for assessing uncertainties in climate change impacts: Low‐flow scenarios for the River Thames, UK. Journal of Water resources research, 42(2). Zahabiun, B., Goodarzi, M, R., & Massah Bovani, A.R. (2011). Application of SWAT model in estimating basin runoff in future periods under the influence of climate change. Journal of Climatological Research, 1(3, 4), 43-58. Zhang, A., Zhang, C., Fu, G., Wang, B., Bao, Z., & Zheng, H. (2012). Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin, Northeast China: Journal of Water resources management, 26(8), 2199-2217. doi: 10.1007/s11269-012-0010-8
| ||
آمار تعداد مشاهده مقاله: 1,181 تعداد دریافت فایل اصل مقاله: 478 |