- Baba Ali, H.R. (2021). Simulating the underground water level of the Selesh plain of Lorestan province using modern meta-exploration algorithms. Hydrogeomorphology, 8(28), 145-162. doi: 10.22034/hyd.2021.47162.1598. (in Farsi)
- Bahmani, R., & Ouarda, T. B. (2021). Groundwater level modeling with hybrid artificial intelligence techniques. Journal of Hydrology, 595, 125659.
- Basak, D., Pal, S., & Patranabis, D.C. (2007). Support vector regression. Neural Inf Process, 11(2), 203-225.
- Dehghani, R., & Poudeh, H. T. (2021). Applying hybrid artificial algorithms to the estimation of river flow: a case study of Karkheh catchment area. Arabian Journal of Geosciences, 14(9), 1-19.
- Hamel, L. H. (2011). Knowledge discovery with support vector machines. John Wiley & Sons.
- Heydari, A. & Jabari, I. (2021). Simulating Marvdasht underground water level and checking forecasting scenarios using MODFLOW mathematical code. Hydrogeomorphology, 8(29), 172-149. doi: 10.22034/hyd.2022.49139.1612. (in Farsi)
- Kisi, O., Karahan, M. E., & Şen, Z. (2006). River suspended sediment modelling using a fuzzy logic approach. Hydrological Processes: An International Journal, 20(20), 4351-4362.
- Lam, Q. D., Meon, G., & Pätsch, M. (2021). Coupled modelling approach to assess effects of climate change on a coastal groundwater system. Groundwater for Sustainable Development, 14, 100633.
- Misra, D., Oommen, T., Agarwal, A., Mishra, S. K., & Thompson, A. M. (2009). Application and analysis of support vector machine-based simulation for runoff and sediment yield. Biosystems engineering, 103(4), 527-535.
- Moravej, M., Amani, P., & Hosseini-Moghari, S. M. (2020). Groundwater level simulation and forecasting using interior search algorithm-least square support vector regression (ISA-LSSVR). Groundwater for Sustainable Development, 11, 100447.
- Nagy, H. M., Watanabe, K. A. N. D., & Hirano, M. (2002). Prediction of sediment load concentration in rivers using artificial neural network model. Journal of Hydraulic Engineering, 128(6), 588-595.
- Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), 62-66.
- Saranya, M. P., & Amudha, T. (2014, December). Optimized block assignment for disaster inspection problem using bat metaheuristics. In 2014 IEEE International Conference on Computational Intelligence and Computing Research (pp. 1-4). IEEE.
- Saidi, M., Kamasi, M. & Hasanpour, S. (2021). Finding the potential of underground water resources using the integrated approach of AHP and Fuzzy Topsis (case study: Silakhor Plain). Hydrogeomorphology, 8(26), 59-41. doi: 10.22034/hyd.2021.37835.1548. (in Farsi)
- Shin, K. S., Lee, T. S., & Kim, H. J. (2005). An application of support vector machines in bankruptcy prediction model. Expert systems with applications, 28(1), 127-135.
- Torabi Podeh, H, Nasrolahi, A. H. & Dehghani, R. (2021). Evaluation of wavelet neural network model in predicting underground water resources (case study: Lorestan province, Iran). Hydrogeology, 6(1), 1-12. doi: 10.22034/hydro.2021.9403
- Vapnik, V., and Chervonenkis, A. (1991). The necessary and sufficient conditions for consistency in the empirical risk minimization method, Pattern Recognition and Image Analysis,1(3), 283-305.
- Vapnik, V.N. (1995). The Nature of Statistical Learning Theory. Springer, New York
- Vapnik, V.N. (1998). Statistical learning theory. Wiley, New York
- Wang, D., Safavi, A.A., and Romagnoli, J.A.(2000). Wavelet-based adaptive robust M-estimator for non-linear system identification, AIChE Journal, 46(4), 1607-1615.
- Yoon, H., Jun, S.C., Hyun, Y., Bae, G.O., and Lee, K.K. (2011). A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer, Journal of Hydrol, 396(4),128–138
- Zamuda, A., Brest, J., & Mezura-Montes, E. (2013, June). Structured population size reduction differential evolution with multiple mutation strategies on CEC 2013 real parameter optimization. In 2013 IEEE congress on evolutionary computation(pp. 1925-1931). IEEE.
- Ziyai, S., Esmali, A., Mostafazadeh, R. & Ghorbani, O. (2021). Investigating the effective factors on changes in the underground water level and aquifer drop in Ardabil plain. Hydrogeomorphology, 8(28), 127-143. doi: 10.22034/hyd.2021.46333.1590
|