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Abstract

..

In this paper, we propose an explicit diffuse the split-step truncated Euler-Maruyama (DSSTEM) method for
stochastic differential equations with non-global Lipschitz coefficients. We investigate the strong convergence
of the new method under local Lipschitz and Khasiminskii-type conditions. We show that the newly proposed

method achieves a strong convergence rate arbitrarily close to half under some additional conditions. Finally, we
illustrate the efficiency and performance of the proposed method with numerical results.
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1. Introduction

Stochastic differential equations (SDEs) are a powerful tool for the modeling real-world problems with uncertainty.
These equations have applications in many areas of applied science, including economics, finance, biology, population
dynamics, chemistry, epidemiology, physics, and engineering [10, 13, 18, 19]. However, for most nonlinear SDEs,
exact solutions are not known. This situation makes numerical methods efficient tools for computing approximate
solutions. In recent years, many researchers have developed numerous approximate schemes for solving SDEs for which
no analytical solution formula exists [10, 17]. In particular, derivative-free stochastic Runge-Kutta (SRK) methods for
strong and weak approximations have been proposed [1, 2, 20]. Recently, new classes of implicit SRK methods with
diagonal drift for the strong approximation were introduced by Shahmoradi et al. [22].

However, the numerical methods have been developed mainly for SDEs with the classical global Lipschitz condition.
In many applications, the global Lipschitz and linear growth conditions are perturbed, leading to a violation of the
convergence properties of most of these methods, such as the Euler-Maruyama (EM) and Milstein methods [8]. It is
common to treat the numerical solution of SDEs with non-global Lipschitz coefficients using implicit methods [6, 14].
In these methods, the application of implicit or drift-implicit numerical methods leads to the solution of a large
system of nonlinear equations when the dimension of the SDEs is large. Therefore, the explicit numerical methods
based on changes in drift and diffusion coefficients have received more attention from researchers. Hutzenthaler et al
[9] first proposed tamed EM schemes to approximate SDEs with the global Lipschitz diffusion coefficient and one-sided
Lipschitz drift coefficients. Sabanis [21] developed tamed EM schemes for SDEs with nonlinear growth coefficients.
Moreover, stopped EM schemes [12], truncated EM schemes [15, 16], truncated Milstein methods [11] and their variants
were also developed to solve the strong convergence problem for nonlinear SDEs. However, as far as we know, these
modified EM and Milstein methods still cannot treat the stability of a large class of stiff SDEs with nonlinear drift
and diffusion coefficients. Although it is common to treat the numerical solution of stiff SDEs with implicit methods
[23], there are some classes of split-step methods with extended stability domains that are well suited for solving stiff
problems [5]. An original contribution was made by Higham, Mao, and Stuart [6], who developed an implicit split-step
variant of the EM method for SDEs with the one-sided Lipschitz drift and global Lipschitz diffusion conditions. As
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implicit methods, Wang and Liu [24] constructed split-step backward balanced Milstein methods for stiff Itô SDEs.
These ideas were further developed by Wang and Liu [25] to introduce fully explicit split-step forward methods for
solving Itô SDEs with remarkable stability properties. However, the main drawback of most of these methods is
that the derivatives of the drift and diffusion coefficients must be evaluated at each step. Among these methods, the
drifting split-step Euler (DRSSE) method and the diffused split-step Euler (DISSE) method are the only methods
that are simultaneously derivative-free and explicit. Although, for stiff SDEs where the stochastic component plays a
significant role in the dynamics, such as large multiplicative noise, it is more recommended to use the DISSE method.

In this paper, we will bring all these ideas together. Based on Mao’s truncated EM method [15], as a fully explicit
method, we propose a derivative-free diffuse split-step truncated EM method for nonlinear stochastic differential
equations with suitable stability properties. We have studied the strong convergence of the new method under local
Lipschitz and Khasiminskii-type conditions. We proved that the new method has a strong convergence rate arbitrarily
close to half. Finally, we illustrate the efficiency and performance of the proposed method with numerical results.

The remainder of the paper is organized as follows. Section 2 contains some notations and preliminary results on
the numerical solution of the truncated EM method. In section 3, we introduce the split-step EM method and its
stability properties in the mean square sense for multiplicative SDEs. In section 4, we will drive a diffuse split-step
truncated EM method for nonlinear SDEs. We then study convergence rates at a single time point in section 5. We
present numerical results in section 6 and our concluding remarks in section 7.

2. Basic concepts and preliminary results

Let (Ω,F ,P) be a complete probability space a right continuous and increasing filtration {Ft}t≥0, where F0 contains

all P-null sets. Here and throughout the paper, if z ∈ Rd, let |z| = (z21+· · ·+z2d)
1/2 be the Euclidean norm. IfQ ∈ Rd×m,

then |Q| represents the Frobenius norm of the matrix Q, i.e. |Q| =
√
trace(QTQ). Moreover, s ∨ t and s ∧ t denote

the maximum and minimum of the numbers s, t ∈ R, respectively, and IG is the indicator function corresponding for
the given set G.

Consider the following d-dimensional Itô SDE

dx(t) = f(x(t))dt+ g(x(t))dB(t), t ∈ [0, T ], (2.1)

with the initial value condition x(0) = x0 ∈ Rd. Here, B(t) = (B1(t), . . . , Bm(t))T is a Ft-adapted m-dimensional
Brownian motion defined on (Ω,F ,P). In SDE (2.1), f : Rd → Rd and g : Rd → Rd×m are drift and diffusion
coefficients, respectively. In the following, for simplicity, we consider numerical methods on a uniform mesh tk = k∆
for k = 1, . . . , N with ∆ = T/N for some N ∈ N.

One well-known method for approximating the SDE (2.1) is the EM method [10]

y(tk+1) = y(tk) + ∆f(y(tk)) + g(y(tk))∆Bk, (2.2)

where ∆Bk = B(tk+1)−B(tk) and y(tk) denote the value of the approximation of the exact solution x(tk) at time tk
for k = 1, . . . , N . As we all know, the EM method (2.2) with order 1

2 is convergent in the strong sense if the drift and
diffusion coefficients satisfy the global Lipschitz condition [10, 18]. However, if this condition is perturbed, it is proved
that the EM method is no longer convergent [8]. In Section 4, we propose the DSSTEM method, which is suitable for
numerical solutions of a class of SDEs with non-global Lipschitz coefficients. To construct this method, we estimate
the growth rate of the coefficients f and g under the following assumptions.

Assumption 1. Suppose there exist real positive constants K1 and β such that

|f(z1)− f(z2)|2 ∨ |g(z1)− g(z2)|2 ≤ K1(1 + |z1|β + |z2|β)|z1 − z2|2, (2.3)

for all z1, z2 ∈ Rd.

From (2.3), we can find the function ν : R+ → R+ such that ν(r) → +∞ as r → +∞, with strictly increasing
continuous properties and

sup
0<|z1|∨|z2|≤r

|f(z1)− f(z2)|
|z1 − z2|

∨ |g(z1)− g(z2)|
|z1 − z2|

≤ ν(r), (2.4)
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for any r ≥ 1. Clearly, ν−1 : [ν(0),+∞) → (0,+∞) is also a strictly increasing continuous function.

Assumption 2. Suppose that the coefficients satisfy the Khasminskii condition: There is a pair of constants K2 > 0
and p > 2 such that

zT f(z) +
p− 1

2
|g(z)|2 ≤ K2(1 + |z|2), (2.5)

for all z ∈ Rd.

The following theorem is a known result in the SDEs setting, see, e.g., [13, pp. 59, Theorem 4.1].

Theorem 2.1. Let Assumptions 1 and 2 hold. Then, the SDE (2.1) with the initial value x(0) = x0 ∈ Rd has a
unique global solution x(t). Moreover, there exists a positive constant C, dependent on T , p, and x0, such that

E|x(t)|p ≤ C, ∀t ∈ [0, T ].

Remark 2.2. For any real number R > |x0|, consider the stopping time

τR := inf{t ≥ 0, |x(t)| ≥ R}. (2.6)

Guo et al. in [4] indicated that there exists a positive constant C independent of R such that

P(τR ≤ T ) ≤ C

Rp
. (2.7)

We will use the fundamental inequality (2.7) to prove the main theorem in section 5.

3. A split-step EM method for SDEs with the global Lipschitz conditions

For SDE (2.1), Wang and Li [25] presented the DISSE method for stiff SDEs, with Y∆(0) = x0 and{
Y ∆(tk) = Y∆(tk) + g(Y∆(tk))∆Bk,

Y∆(tk+1) = Y ∆(tk) + ∆f(Y ∆(tk)),
(3.1)

for k = 0, 1, . . . , N − 1 where ∆Bk = B(tk+1)−B(tk). Suppose f and g in (2.1) satisfy the global Lipschitz condition
for the constant KL > 0, i.e.

|f(z1)− f(z2)| ∨ |g(z1)− g(z2)| ≤ KL|z1 − z2|, ∀z1, z2 ∈ R. (3.2)

Then the strong order of convergence of the DISSE method is 1
2 , and it is not suitable for solving stochastic systems

with non-global Lipschitz condition, see for example [8].
When we apply (3.1) to the scalar test equation

dx(t) = λx(t)dt+ µx(t)dB(t), t > 0, y(0) = y0 ̸= 0, (3.3)

with 2R(λ)+ |µ|2 < 0, we have Y∆(tk+1) = Rk(λ∆, µ
√
∆, J)Y∆(tk) where J is the standard Gaussian random variable

J ∼ N(0, 1). Here, R(p, q, J) is called a stability function and is expressed by

Rk(p, q, J) = (1 + p)(1 + qJ), (3.4)

where p = λ∆ and q = µ
√
∆. If we apply the expectation operation to both sides of (3.4), we also get

E|Y∆(tk+1)|2 = R(p, q)E|Y∆(tk)|2, (3.5)

where R(p, q) = E|Rk(p, q, J)|2 in (3.5) is called the MS-stability function of the method. Thus, we obviously obtain
MS-stability, i.e., E|Y∆(tk)|2 → 0 as k → ∞, if R(p, q) < 1. The set RMS = {(p, q) ∈ C2 : R(p, q) < 1} ⊆ C2 is
called the domain of MS-stability of the method. Especially, the domain is called the region of stability in the case of
(p, q) ∈ R2. With some simple calculations, the MS-stability function of the split-step method (3.1) is given by

R(p, q) = (1 + p)2(1 + q2).

The corresponding regions of MS-stability for the two methods EM and DISSE are shown in Figure 1. From Figure 1,
we can see that the region of MS-stability for the DISSE method (light gray area) includes the region of MS-stability
for the EM method (dark gray area). It is therefore obvious that the DISSE method has a much better result in terms



CMDE Vol. 11, No. 3, 2023, pp. 522-534 525

Figure 1. Mean-square stability region for the DISSE method (3.1) (light gray surface) and the
EM method (dark gray surface).

of MS-stability, at least for the SDE (3.3) that obeys the global Lipschitz condition. This is especially true for SDEs
where the stochastic part plays a significant role in their dynamics, such as in the case of large multiplicative noise.

4. The diffused split-step truncated EM method for nonlinear SDEs

In this section, by modifying f and g in (2.1), we propose an explicit diffused split-step truncated Euler-Maruyama
method for SDEs with non-global Lipschitz coefficients. In the following, C stands for generic positive real constants
that can vary from one place to another and depend on p, T , and x0 but are independent of the step size ∆.

To construct the new method, we assume that the function ν satisfies the following condition in addition to the
properties (2.4)

sup
|z|≤r

(
|f(z)| ∨ |g(z)|

)
≤ ν(r), (4.1)

for any r ≥ 1. Due to Assumption 1, the function ν is well defined. Assume that there exists a strictly decreasing
function h : (0, 1] → (0,+∞) such that

∆1/4h(∆) ≤ ĥ, lim
∆→0

h(∆) = +∞, ∀∆ ∈ (0, 1], (4.2)

for a constant ĥ ≥ 1. For example, we can consider h(∆) = ηh∆
−ϵω for suitable positive constants ηh and ϵ ∈ (0, 1/4ω)

with ω > 0. For a given step size ∆ ∈ (0, 1], suppose κ∆ : Rd → Rd denotes the truncation mapping defined by
κ∆(z) :=

(
ν−1(h(∆)) ∧ |z|

)
z
|z| . Here, we set z

|z| = 0 if z = 0. We can easily show that for all z1, z2 ∈ Rd

|κ∆(z1)| ≤ |z1|, |κ∆(z1)− κ∆(z2)| ≤ 2|z1 − z2|. (4.3)

In this paper, for a given step size ∆ ∈ (0, 1], we define the truncated functions by

f∆(z) := f(κ∆(z)), g∆(z) := g(κ∆(z)). (4.4)



526 A. HAGHIGHI

It is obvious from (4.1) and (4.4) that

|f∆(z)| ∨ |g∆(z)| ≤ h(∆), ∀z ∈ Rd. (4.5)

Lemma 4.1. ([7]) Suppose (2.5) hold. Then, there exists a constat K3 such that for all ∆ ∈ (0, 1] and z ∈ Rd

zT f∆(z) +
p− 1

2
|g∆(z)| ≤ K3(1 + |z|2).

Now, according to the definition of the truncated functions (4.4), we introduce the DSSTEM method for the SDE
(2.1) with Y (0) = x0 and{

Z∆(tk) = Y∆(tk) + g∆(Y∆(tk))∆Bk,

Y∆(tk+1) = Z∆(tk) + ∆f∆(Z∆(tk)),
(4.6)

for k = 0, 1, . . . , N − 1 where ∆Bk = B(tk+1)− B(tk). Here, we form a continuous-time version of the method (4.6).
In this regard, first, for any fixed step size ∆ ∈ (0, 1] satisfying in (4.2) set

Y∆(t) =

∞∑
k=0

Y∆(tk)I[tk,tk+1), Z∆(t) =

∞∑
k=0

Z∆(tk)I[tk,tk+1), ∀t ≥ 0. (4.7)

We define the continuous-time version of the new method (4.6) as follows

y∆(t) = Y∆(t) +

∫ t

tk

f∆(Z∆(ζ))dζ +

∫ t

tk

g∆(Y∆(ζ))dB(ζ), ∀t ∈ [tk, tk+1). (4.8)

From (4.6)-(4.8), we observe that

y∆(t) = x0 +

∫ t

0

f∆(Z∆(ζ))dζ +

∫ t

0

g∆(Y∆(ζ))dB(ζ), (4.9)

for t ≥ 0. In the following lemma, we show how the values y∆(t) and Y∆(t) can be close to each other.

Lemma 4.2. For any the step size ∆ ∈ (0, 1] and p̂ > 0, we obtain

E(|y∆(t)− Y∆(t)|p̂) ∨ E(|y∆(t)− Z∆(t)|p̂) ≤ C∆p̂/2(h(∆))p̂, ∀t ≥ 0. (4.10)

Proof. First of all, fix p̂ ≥ 2. For a given t ≥ 0, let k ≥ 0 be a suitable integer number such that tk ≤ t < tk+1. From
(4.8), by applying Theorem 7.1 in [13], we have

E
∣∣Z∆(t)− Y∆(t)

∣∣p̂ = E
∣∣∣∫ tk+1

tk

g∆(Y∆(ζ))dB(ζ)
∣∣∣p̂

≤ ∆
p̂−2
2 E

∫ tk+1

tk

∣∣g∆(Y (ζ))
∣∣p̂dζ ≤ ∆p̂/2(h(∆))p̂. (4.11)

In addition, because of the inequality |
∑n

i=1 αi|p̂ ≤ np̂−1
∑n

i=1|αi|p̂, from (4.8) we have

E
∣∣y∆(t)− Y∆(t)

∣∣p̂ ≤ CE
(∣∣∣∫ t

tk

f∆(Z∆(ζ))dζ
∣∣∣p̂ + ∣∣∣∫ t

tk

g∆(Y∆(ζ))dB(ζ)
∣∣∣p̂).

So, by Theorem 7.1 in [13] (Page 39), we obtain

E
∣∣y∆(t)− Y∆(t)

∣∣p̂ ≤ C
(
∆p̂−1E

∫ t

tk

∣∣∣f∆(Z∆(ζ))
∣∣∣p̂dζ +∆

p̂−2
2 E

∫ t

tk

∣∣∣g∆(Y∆(ζ))
∣∣∣p̂dζ).

Now, by applying the relation (4.5), we can conclude

E
∣∣y∆(t)− Y∆(t)

∣∣p̂ ≤ C
(
∆p̂(h(∆))p̂ +∆p̂/2(h(∆))p̂

)
. (4.12)

On the other hand, for any p̂ ∈ (0, 2) by the Hölder inequality and (4.12), we have

E
∣∣y∆(t)− Y∆(t)

∣∣p̂ ≤
(
E
∣∣y∆(t)− Y∆(t)

∣∣2)p̂/2

≤ C
(
∆(h(∆))2

)p̂/2

= C∆p̂/2(h(∆))p̂.
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Due to the same reason from (4.11), we can prove

E(|y∆(t)− Z∆(t)|p̂) ≤ C∆p̂/2(h(∆))p̂.

So, the proof is completed. �

Lemma 4.3. Suppose Assumption 2 holds. Then for any T > 0 and ∆ ∈ (0, 1] satisfying in (4.2), we have

sup
0<∆≤1

(
sup

0≤t≤T
E|y∆(t)|p

)
≤ C. (4.13)

Proof. For any fix ∆ ∈ (0, 1] and T > 0, from (4.9) and the Itô formula, we have

E|y∆(t)|p ≤ E|y∆(0)|p + pE
∫ t

0

|y∆(ζ)|p−2
(
yT∆(ζ)f∆(Z∆(ζ)) +

p− 1

2
|g∆(Y∆(ζ))|2

)
dζ

= |x0|p + pE
∫ t

0

|y∆(ζ)|p−2
(
Y T
∆ (ζ)f∆(Y∆(ζ)) +

p− 1

2
|g∆(Y∆(ζ))|2

)
dζ

+ pE
∫ t

0

|y∆(ζ)|p−2
((

y∆(ζ)− Y∆(ζ)
)T

f(Y∆(ζ))
)
dζ

+ pE
∫ t

0

|y∆(ζ)|p−2
(
yT∆(ζ)

(
f∆(Z∆(ζ))− f∆(Y∆(ζ))

))
dζ.

By Lemmas 4.1 and 4.2 and the Young inequality that is

zp−2
1 z2 ≤ p− 2

p
zp1 +

2

p
z
p/2
2 , ∀z1, z2 ≥ 0, (4.14)

we can write

E|y∆(t)|p ≤ E|x0|p + (p− 2)(K3 + 2)E
∫ t

0

|y∆(ζ)|pdζ + 2K3E
∫ t

0

(
1 + |Y∆(ζ)|2

)p/2
dζ

+ 2E
∫ t

0

|y∆(ζ)− Y∆(ζ)|p/2|f(Y∆(ζ))|p/2dζ + 2E
∫ t

0

|y∆(ζ)|p/2|f∆(Z∆(ζ))− f(Y∆(ζ))|p/2dζ.

Therefore, we can write

E|y∆(t)|p ≤ C1 + C2

∫ t

0

(
E|y∆(ζ)|p + E|Y∆(ζ)|p

)
dζ +Π1 +Π2, (4.15)

for some positive constants C1 and C2 in which

Π1 = 2E
∫ t

0

|y∆(ζ)− Y∆(ζ)|p/2|f(Y∆(ζ))|p/2dζ,

and

Π2 = 2E
∫ t

0

|y∆(ζ)|p/2|f∆(Z∆(ζ))− f(Y∆(ζ))|p/2dζ.

Next, we try to estimate the values Π1 and Π2. Concerning Π1, we use (4.10) and Lemma 4.2 to arrive at

Π1 ≤ 2(h(∆))p/2
∫ T

0

E|y∆(ζ)− Y∆(ζ)|p/2dζ ≤ C3T∆
p/4(h(∆))p ≤ C3T ĥ

p, (4.16)
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for a positive constant C3. By the Young inequality (4.14), Lemma 4.2 with the relations (2.4) and (4.3), we can
approximate Π2 as below

Π2 ≤
∫ t

0

E|y∆(ζ)|pdζ + E
∫ T

0

|f∆(Z∆(ζ))− f∆(Y∆(ζ))|pdζ

≤
∫ t

0

E|y∆(ζ)|pdζ + (h(∆))p
∫ T

0

E|κ∆(Z∆(ζ))− κ∆(Y∆(ζ))|pdζ

≤
∫ t

0

E|y∆(ζ)|pdζ + 2T∆p(h(∆))2p ≤
∫ t

0

E|y∆(ζ)|pdζ + C4, (4.17)

with a constant C4 ∈ R+. Inserting (4.16) and (4.17) into (4.15) leads to

E|y∆(t)|p ≤ A1 +A2

∫ t

0

(E|y∆(ζ)|p + E|Y∆(ζ)|p)dζ

≤ A1 +A2

∫ t

0

sup
0≤s≤ζ

(E|y∆(s)|p)dζ,

for some positive real constants A1 and A2. In the above inequality as the sum of the right-hand-side terms are
increasing functions of t, we can assume

sup
0≤s≤t

E|y∆(s)|p ≤ A1 +A2

∫ t

0

(
sup

0≤s≤ζ
E|y∆(s)|pdζ

)
.

By the Gronwall inequality, we have

sup
0≤ζ≤t

E|y∆(ζ)|p ≤ C,

which gives us the required assertion. �

Remark 4.4. Let Assumption 2 hold and ∆ in (0, 1] be fixed. For any t ∈ [0, T ], there exists integer number k such
that t ∈ [tk, tk+1) and Z∆(t) = Z∆(tk). From (4.2) and (4.5), we can conclude

|Z∆(t)|p ≤ 2p−1
(
|Y∆(t)|p + (h(∆))p|∆Bk|p

)
.

Since

E|∆B(tk)|p =
2p/2Γ(p+1

2 )
√
π

∆p/2,

from (4.13), we have

E|Z∆(t)|p ≤ 2p−1
(

sup
0≤∆≤1

(
sup

0≤t≤T
E|Y∆(t)|p

)
+

2p/2Γ(p+1
2 )

√
π

ĥp
)
,

which implies

sup
0≤∆≤1

(
sup

0≤t≤T
E|Z∆(t)|p

)
< ∞. (4.18)

5. Convergence properties

In this section, we are going to study the convergence rates of the DSSTEM method (4.6). Accordingly, we need
an additional condition.

Assumption 3. Assume that there exist real positive constants K4 and q > 2 such that

(z1 − z2)
T
(
f(z1)− f(z2)

)
+

q − 1

2
|g(z1)− g(z2)|2 ≤ K4|z1 − z2|2, ∀z1, z2 ∈ Rd.
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In addition to (2.6), for any real number R > |x0|, we define two stopping times

γR := inf{t ≥ 0, |y∆(t)| ≥ R}, and γR := inf{t ≥ 0, |Z∆(t)| ≥ R}.

Lemma 5.1. Let Assumption 2 hold and R > |x0| be fixed. Then, for any sufficiently small step size ∆ ∈ (0, 1], there
exist positive constant K ′ independent of R and ∆ such that

P(γR ≤ T ) ∨ P(γR ≤ T ) ≤ K ′

Rp
.

Proof. Replacing t by γR ∧ T in Lemma 4.3, we can derive that

E(y∆(γR ∧ T )) ≤ K ′
1,

for a positive real constant K ′
1. Therefore,

RpP(γR ≤ T ) = E
(
|y∆(γR)|pI{γR≤T}

)
≤ E|y∆(γR ∧ T )|p ≤ K ′

1.

On the other hand, by (4.7) and (4.18), one can similarly arrive at

P(γR ≤ T ) ≤ K ′
2

Rp
,

for a positive constant K ′
2 which completes the proof. �

Theorem 5.2. Consider an arbitrary given real number R > |x0|. If the coefficients of the SDE (2.1) satisfy in
Assumptions 1-3 such that 2p > qβ and p > q > 2. Then for any desired step size ∆ ∈ (0, 1] with property ν−1(h(∆)) ≥
R and for any q̃ ∈ [2, q), we have

E(|e∆(t ∧ θ∆,R)|q̃) ≤ C∆q̃/2(h(∆))q̃, (5.1)

for all positive T . Here, e∆(t) := x(t)− y∆(t) and θ∆,R = θ := τR ∧ γR ∧ γR.

Proof. We try to estimate e∆(t ∧ θ) for the approximation solution y∆(t). In this regard, from relations (2.1) and
(4.9), we can write

e∆(t ∧ θ) =

∫ t∧θ

0

(
f(x(ζ))− f∆(Z∆(ζ))

)
dζ +

∫ t∧θ

0

(
g(x(ζ))− g∆(Y∆(ζ))

)
dB(ζ).

By Itô formula for any 0 ≤ t ≤ T , we have

E|e∆(t ∧ θ)|q̃ ≤ E
∫ t∧θ

0

q̃|e∆(ζ)|q̃−2
(
eT∆(ζ)

[
f(x(ζ))− f∆(Z∆(ζ))

]
+

q̃ − 1

2
|g(x(ζ))− g∆(Y∆(ζ))|2

)
dζ. (5.2)

For ζ ∈ [0, t ∧ θ], we see that Y∆(ζ) ∨ Z∆(ζ) ≤ R. But we have the condition ν−1(h(∆)) ≥ R, so Y∆(ζ) ∨ Z∆(ζ) ≤
ν−1(h(∆)). Recalling the truncated functions f∆ and g∆, we can conclude

f∆(Z∆(ζ)) = f(Z∆(ζ)), g∆(Y∆(ζ)) = g(Y∆(ζ)), (5.3)

for all ζ ∈ [0, t ∧ θ]. By the Young inequality with ε = q−q̃
q̃−1 that is

2z1z2 ≤ εz21 +
z22
ε
, ∀z1, z2 ≥ 0,

and (5.3), we can conclude that∣∣g(x(ζ))− g∆(Y∆(ζ))
∣∣2 ≤

∣∣g(x(ζ))− g(y∆(ζ))
∣∣2 + ∣∣g(y∆(ζ))− g(Y∆(ζ))

∣∣2
+ 2

∣∣g(x(ζ))− g(y∆(ζ))
∣∣∣∣g(y∆(ζ))− g(Y∆(ζ))

∣∣
≤

(
1 +

q − q̃

q̃ − 1

)∣∣g(x(ζ))− g(y∆(ζ))
∣∣2 + (

1 +
q̃ − 1

q − q̃

)∣∣g(y∆(ζ))− g(Y∆(ζ))
∣∣2. (5.4)

Therefore, by inserting (5.4) into (5.2), we have

E|e(t ∧ θ)|q̃ ≤ Π3 +Π4, (5.5)
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where

Π3 = E
∫ t∧θ

0

q̃|e∆(ζ)|q̃−2
(
eT∆(ζ)

[
f(x(ζ))− f(y∆(ζ))

]
+

q − 1

2

∣∣g(x(ζ))− g(y∆(ζ))
∣∣2)dζ,

and

Π4 = E
∫ t∧θ

0

q̃|e∆(ζ)|q̃−2
(
eT∆(ζ)

[
f(y∆(ζ))− f(Z∆(ζ))

]
+

(q̃ − 1)(q − 1)

2(q − q̃)

∣∣g(y∆(ζ))− g(Y∆(ζ))
∣∣2)dζ.

Clearly, from Assumption 3, we obtain

Π3 ≤ q̃K4E
∫ t

0

|e∆(ζ ∧ θ)|q̃dζ. (5.6)

To approximate Π4, by the Young inequality and Assumption 1, we can write

Π4 ≤ q̃

2
E
∫ t

0

|e∆(ζ ∧ θ)|q̃dζ +Π41 +Π42, (5.7)

where

Π41 =
q̃

2
E
∫ t∧θ

0

|e∆(ζ)|q̃−2
(
1 + |y∆(ζ)|β + |Z∆(ζ)|β

)
|y∆(ζ)− Z∆(ζ)|2dζ,

and

Π42 =
(q̃ − 1)(q − 1)

2(q̃ − q)
E
∫ t∧θ

0

|e∆(ζ)|q̃−2
(
1 + |y∆(ζ)|β + |Y∆(ζ)|β

)
|y∆(ζ)− Y∆(ζ)|2dζ.

About Π41, we first use Young’s inequality. Since p > q > 2 and 2p > qβ, by the Hölder inequality and Lemmas 4.2
and 4.3, we can write

Π41 ≤ C1E
∫ t

0

|e∆(ζ ∧ θ)|q̃dζ + C2E
∫ t∧θ

0

(
1 + |y∆(ζ)|

βq̃
2 + |Z∆(ζ)|

βq̃
2

)
|y∆(ζ)− Z∆(ζ)|q̃dζ,

≤ C1E
∫ t

0

|e∆(ζ ∧ θ)|q̃dζ + C2

∫ T

0

(
E|y∆(ζ)− Z∆(ζ)|

2pq̃
2p−βq̃

) 2p−βq̃
2p

(
1 + E|y∆(ζ)|p + E|Z∆(ζ)|p

) βq̃
2p

dζ

≤ C1E
∫ t

0

|e∆(ζ ∧ θ)|q̃dζ + C2∆
q̃/2(h(∆))q̃. (5.8)

In the same way as above by the Hölder inequality, we have

Π42 ≤ C3E
∫ t

0

|e∆(ζ ∧ θ)|q̃dζ + C4∆
q̃/2(h(∆))q̃, (5.9)

where C3 and C4 are positive constants independent of the step size ∆. By substituting (5.6)-(5.9) into (5.5) and
applying Gronwall’s inequality, the proof is thus completed. �

To prove the strong convergence rate of the DSSTEM method (4.6), we present the following theorem.

Theorem 5.3. Let Assumptions 1, 2, and 3 be fulfilled with 2p > qβ and p > q > 2. For any q̃ ∈ [2, q) , let

R
(q̃)
∆ :=

(
∆q̃/2(h(∆))q̃

)−1/(p−q̃)
. If there exist 0 < δ ≤ 1 and q̃ ∈ [2, q) such that

ν−1(h(∆)) ≥ R
(q̃)
∆ , ∀∆ ∈ (0, δ]. (5.10)

Then, for sufficiently small ∆ ∈ (0, δ], we have

E|x(T )− y∆(tN )|q̃ ≤ C∆q̃/2(h(∆))q̃, (5.11)

where C is a positive real constant independent of ∆ and N = T/∆ ∈ N.
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Proof. We choose q̃ ∈ [2, q) and δ > 0 such that the value R
(q̃)
∆ satisfy the relation (5.10). From now on, let ∆ ∈ (0, δ)

be a fixed positive number. For this setting we have

E|x(T )− y∆(tN )|q̃ = E
(
|x(T )− y∆(tN )|q̃I{θ

∆,R
(q̃)
∆

>T}
)
+ E

(
|x(T )− y∆(tN )|q̃I{θ

∆,R
(q̃)
∆

≤T}
)

:= Υ1 +Υ2. (5.12)

By applying (5.1) in Theorem 5.2, we obtain

Υ1 ≤ C∆q̃/2(h(∆))q̃. (5.13)

Concerning, Υ2, we use Young’s inequality, which reads

zq̃1z2 ≤ εq̃

p
zp1 +

p− q̃

pεq̃/(p−q̃)
z
p/(p−q̃)
2 , ∀q̃ ∈ [2, q),

for any positive ε and z1, z2 ∈ [0,+∞), see [4] for more details. Therefore, we have

Υ2 ≤ εq̃

p
E
(
|x(T )− y∆(tN )|p

)
+

p− q̃

pεq̃/(p−q̃)
P(θ

∆,R
(q̃)
∆

≤ T ), (5.14)

for any ε > 0 and q̃ ∈ [2, q). Due to Theorem 2.1 and Lemma 4.3, there is a constant C independent of ∆ such that

E
(
|x(T )− y∆(tN )|p

)
≤ C. (5.15)

On the other hand, by applying Remark 2.2 and Lemma 5.1 we have

P(θ
∆,R

(q̃)
∆

≤ T ) ≤ P(τ
R

(q̃)
∆

≤ T ) + P(γ
R

(q̃)
∆

≤ T ) + P(γ
R

(q̃)
∆

≤ T ) ≤ C

(R
(q̃)
∆ )p

. (5.16)

By setting ε = ∆q̃/2(h(∆))q̃ in (5.14), from relations (5.15) and (5.16), we can conclude

Υ2 ≤ C
( q̃
p
∆q̃/2(h(∆))q̃ +

p− q̃

p
(
∆q̃/2(h(∆))q̃

)q̃/(p−q̃)

(
∆q̃/2(h(∆))q̃

)p/(p−q̃))
≤ C∆q̃/2(h(∆))q̃, (5.17)

for some constant C independent of ∆. Inserting (5.13) and (5.17) into (5.12) completes the proof. �

6. Numerical results

In this section, we illustrate the efficiency of the proposed method in terms of accuracy and stability. We also
compare the DSSTEM method (4.6) with the truncated EM method in [15] and the partially truncated EM method
in [3]. Accordingly, we consider an example of strongly nonlinear equations and compute the root mean square error
of approximation (RMSE) for a given step size ∆, defined by(

E|x(T )− y∆(T )|2
)1/2

≈
( 1

2000

2000∑
i=1

∣∣x(i)(T )− y
(i)
∆ (T )

∣∣2)1/2

. (6.1)

Example 6.1. Consider the scalar nonlinear Itô SDE with a one-dimensional Wiener process

dx(t) = (x(t)− x5(t))dt+ x2(t)dB(t), t ≥ 0, x(0) = 1. (6.2)

We consider the SDE (6.2) as a test problem where the linear growth condition is violated. It is obvious that
Assumption 1 with β = 8 and Assumption 3 are satisfied for any q ≥ 2. Regarding Assumption 2: For any p > 3, we
can write

zf(z) +
p− 1

2
|g(z)|2 = |z|2 − |z|6 + p− 1

2
|z|4 ≤ C(1 + z2), ∀z ∈ R.

Here, C is a suitable positive constant in R. Concerning (2.4), it is clear

sup
0<|z1|∨|z2|<r

|f(z1)− f(z2)|
|z1 − z2|

∨ |g(z1)− g(z2)|
|z1 − z2|

≤ (5r4 + 1). (6.3)
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Moreover, about (4.1) we have

sup
|z|≤r

(
|f(z)| ∨ |g(z)|

)
≤ r5 ≤ 3r5, (6.4)

for any r ≥ 1. According to (6.3) and (6.4), we choose ν(r) = 3r5. On the other hand, for a given ε ∈ (0, 0.25), we
consider h(∆) = ηh∆

−ε for ηh ≥ 3. For this setting (4.2) is fulfilled. About (5.10), for any ε ∈ (0, 0.25) and q̃ ≥ 2, we

choose p ≥ ( 5q̃2ε − 4q̃) ∨ q̃ ∨ 4, which implies(
1 +

5q̃

p− q̃

)
ε ln(∆) ≤ 2.5q̃

p− q̃
ln(∆) +

5q̃

p− q̃
ln(ηh) + ln(

ηh
3
), ∀∆ ∈ (0, 1).

Figure 2. The RMSE as a function of step size ∆ for the approximation of Example 6.1 at time
T = 4 with parameters ηh = 3× 105, ε = 0.1 and q̃ = 2.

Therefore, using elementary calculations, we can obtain

ηh
3
∆−ε ≥

((
ηq̃h∆

q̃/2−q̃ε
) −1

p−q̃

)5

.

So, the property (5.11) in Theorem 5.3 is fulfilled and for any ε ∈ (0, 0.25), we can deduce

E|x(T )− y(tN )|q̃ ≤ CT∆
q̃/2−q̃ε, ∆ ∈ (0, 1), (6.5)

with N = T/∆ ∈ N. To show the efficiency of the DSSTEM method in terms of stability and accuracy, we calculate
the RMSE (6.1) as a function of the step size ∆ for different values of T and ηh in Figures 2-4. Since there is no explicit
solution for (6.2), we search for a numerical solution with a small step size ∆ = 2−23 using the implicit Milstein-Taylor
method [23] and use it as a reference solution. We also use the mean of 2000 independent realizations to approximate
the expected value at the final time T . In Figures 2-4, we can see that the convergence rate of the new method is
very close to half of the expected convergence rate in (6.5), and that the new method has better properties in terms
of accuracy and stability than the truncated EM method in [15] and the partially truncated EM method in [3].

The simulation results presented in Figures 2-4 clearly show that the proposed method is an efficient one in terms
of MS stability and accuracy.
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Figure 3. The RMSE as a function of step size ∆ for the approximation of Example 6.1 at time
T = 6 with parameters ηh = 3× 95, ε = 0.1 and q̃ = 2.

Figure 4. The RMSE as a function of step size ∆ for the approximation of Example 6.1 at time
T = 6 with parameters ηh = 3× 55, ε = 0.1 and q̃ = 2.

7. Conclusion

In this paper, we present the diffuse split-step truncated Euler-Maruyama method for nonlinear stochastic differen-
tial equations. We prove the boundedness of the moment and the convergence of the numerical solution under some
additional conditions. We proved that the strong convergence rate of the proposed method can be arbitrarily close to
half. Finally, we have confirmed the advantages of the new method in numerical experiments.
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