- [1] E. Ahmad, A. M. A. El-Sayed, and H. A. A. El-Saka, Equilibrium points, stability and numerical solutions of fractional order predator-prey and rabies models, J. Math. Anal. Appl., 325 (2007), 542–553.
- [2] S. Alavi, A. Haghighi, A. Yari, and F. Soltanian, A numerical method for solving fractional optimal control problems using the operational matrix of Mott polynomials, Comput. Methods Differ. Equ., 10(3) (2022), 755– 773.
- [3] F. A. Alazabi, M. A. Zohdy, and A. A. Ezzabi, A regulator design for nonlinear HIV-1 infection system, Int. J. Intel. Cont. Sys., 17(1) (2012), 1–6.
- [4] M. Arablouye Moghaddam, Y. Edrisi Tabriz, and M. Lakestani, Solving fractional optimal control problems using Genocchi polynomials, Comput. Methods Differ. Equ., 9(1) (2021), 79–93.
- [5] N. Bellomo and M. Delitala, The mathematical kinetic, and stochatic game theroy to modelling mutations, pro- gression and immune competition of cancer cells, Phys. Life Rev. 5 (2008), 183–206.
- [6] M. Clerc and J. Kennedy, The particle swarm–explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evol. Comput., 6(1) (2000), 58–73.
- [7] L. Cai, J. Liu, and Y. Chen, Dynamics of an age-structured HIV model with super-infection, Appl. Comput. Math., Int. J., 20(2) (2021), 257–276.
- [8] V. Daftardar-Gejji and S. Bhalekar, Chaos in fractional ordered Liu system, Comput. & Math. Appl., 59(3) (2010), 1117–1127.
- [9] W. Deng, C. Li, and J. lU, Stability analysis of linear fractional differential system with multiple time delays, Nonlinear Dyn., 48 (2007), 409–416.
- [10] Y. Ding, Z. Wang and H. Ye, Optimal control of a fractional-order HIV-immune system with memory, IEEE Transactions On Contril Systems Technology, 20(3) (2012), 763–769.
- [11] R. Eberhart and Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, In: Proceedings of the 2000 Congress on Evolutionary Computation, Washington DC, 1 (2000), 84–88.
- [12] G. B. Fogel, E. S. Liu, M. Salemi, S. L. Lamers, and M. S. McGrath, Evolved Neural Networks for HIV-1 Co- receptor Identification , 2014 IEEE Congress on Evolutionary Computation (CEC), July 6-11, 2014, Beijing, China.
- [13] M. Gachpazan, A. H. Borzabadi, and A. V. Kamyad, A measure-theoretical approach for solving discrete optimal control problems, Appl. Math. Comput., 173 (2) (2006), 736–752.
- [14] S. Ghasemi, A. Tabesh, and J. Askari, Application of fractional calculus theory to robust controller design for wind turbine generators, IEEE Transactions on Energy Conversion, 29(3) (2014).
- [15] A. E. Gohary and I. A. Alwasel, The chaos and optimal control of cancer model with complete unknown parameters, Chaos, Solitons and Fractals, 42 (2009), 2865–2874.
- [16] A. S. Hegazi, E. Ahmed, and A. E. Matouk, On chaos control and synchronization of the commensurate fractional order Liu system, Commun. Nonlinear Sci. Num. Simul., 18(5) (2013), 1193–1202.
- [17] H. Y. Jia, Z. Q. Chen, and G. Y. Qi, Chaotic characteristics analysis and circuit implementation for a fractional- order system, IEEE Transactions on circuits and systems–I: Regular paper, 61(3) (2014).
- [18] N. Kanagaraj and V. N. Jha, (2021), Design of an enhanced fractional order PID controller for a class of second- order system, COMPEL-The Int. J. Comput. Math. Electrical and Electronic Engin., 40(3) (2021), 579–592.
- [19] J. Kennedy and R. C. Eberhart, (1995)Particle swarm optimization. In: Proceedings of the 1995 IEEE Interna- tional Conference on Neural Networks, Perth, Australia, 4 (1995), 1942–1948. IEEE Service Center, Piscataway.
- [20] M. Khanra, J. Pal, and K. Biswas, Reduced order approximation of MIMO fractional order systems, IEEE J. on Emerging and selected topics in circuits and systems, 3(3) (2013).
- [21] X. Liu, L. Hong, and L. Yang, Fractional-order complex T system: bifurcations, chaos control, and synchroniza- tion, Nonlinear Dyn., 75 (2014), 589–602.
- [22] X. Liu, L. Hong, L. Yang and D. Tang, Bifurcations of a new fractional-order system with a one-scroll chaotic attractor, Discrete Dynamics in Nature and Society, 2019 (2019), Article ID 8341514, 15 pages.
- [23] D. Matiognon, Stability results for fractional differential equations with applications to control processing in: Computational engineering in systems and application multi conference, IMACS IEEE-SMC Proceedings, 2 (1996), 963–968.
- [24] S. Z. Moussavi, M. Alasvandi, S. Javadi, and E. Morad, PMDC motor speed control optimization by implementing ANFIS and MRAC, Int. J. Cont. Sci. Engin., 4(1) (2014), 1–8.
- [25] E. L. Mazzaferri and S. M. Jhiang, Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer, The American Journal of Medicine, 97(5) (1994), 418–428.
- [26] F. Merrikh-Bayat, More details on analysis of fractional-order Lotka-Volterra equation, The 5th IFAC symposium on fractional differentiation and its applications (FDA12), 14-17 May 2012, Hohai University, Nanjing, China, arXiv:1401.0103.
- [27] S. Micael, N. M. Couceiro, F. Ferreira, and J. A. Tenreiro Machado, Control optimization of a robotic bird, Computer Science, (2009).
- [28] K. Moaddy, A. Freihat, M. Al-Smadi, et al., Numerical investigation for handling fractional-order Rabi- novich–Fabrikant model using the multistep approach, Soft Comput., 22 (2018), 773–782.
- [29] I. Petras, A note on the fractional-order Volta’s system, Commun. Nonlinear Sci. Num. Simul., 15(2) (2010), 384–393.
- [30] A. Razminia, V. J. Majd, and D. Baleanu, Chaotic incommensurate fractional order R¨ossler system: active control and synchronization, Adv. Differ. Equ., 15 (2011).
- [31] S. Sayyad Delshad, M. Mostafa Asheghan, and M. Hamidi Beheshti, Synchronization of N-coupled incommensurate fractional-order chaotic systems with ring connection, Commun. Nonlinear Sci. Num. Simul., 16(9) (2009), 3815– 3824.
- [32] M. Shahiri, R. Ghaderi, A. Ranjbar N. S. H. Hosseinnia, and S. Momani, Chaotic fractional-order Coullet system: Synchronization and control approach, Commun. Nonlinear Sci. Num. Simul., 15(3) (2010), 665–674.
- [33] Y. Shi and R. Eberhart, A modified particle swarm optimizer. In: Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence, The 1998 IEEE International Conference on, Anchorage, Alaska, (1998), 69–73.
- [34] M. S. Tavazoei and M. Haeri, A necessary condition for double scroll attractor existence in fractional-order systems, Phys. Let. A, 367(1–2) (2007), 102–113.
- [35] M. S. Tavazoei and M. Haeri (2008), Chaotic attractors in incommensurate fractional order systems, Phys. D, 237(20) (2008), 2628–2637.
- [36] M. S. Tavazoei and M. Haeri, Limitations of frequency domain approximation for detecting chaos in fractional order systems, Nonlinear Anal.: Theo., Meth. & Appl., 69(4) (2008),1299–1320.
- [37] M. S. Tavazoei, M. Haeri, M. Attari, S. Bolouki, and M. Siami, More details on analysis of fractional-order Van der Pol oscillator, J. Vibration Cont., 15(6) (2009), 803–819.
- [38] M. S. Tavazoei, M. Tavakoli-Kakhki, and F. Bizzarri, Nonlinear fractional-order circuits and systems: motivation, A brief overview, and some future directions, IEEE Open Journal of Circuits and Systems, 1, 220–232.
- [39] J. Wang Gary, G. Yen Marios, and M. Polycarpou, 9th International symposium on neural networks, Shenyang, China, July 11-14, 2012. Proceedings, Part I.
- [40] Z. Wang, X. Huang, and G. Shi,(2011)Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay, Comput. & Math. Appl., 62(3) (2011), 1531–1539.
- [41] H. Zarei, A. V. Kamyad, and S. Effati, Multiobjective optimal control ofHIV dynamics, Math. Problems Engin., 2010 (2010), Article ID 568315, 29 pages.
- [42] H. Zarei, A. V. Kamyad and M. H. Farahi, Optimal control of HIV dynamic using embedding method, Computa- tional and Mathematical Methods in Medicine, Hindawi Publishing Corporation, 2011.
- [43] H. Zarei, A. Vahidian Kamyad, and A. Akbar Heydari, Fuzzy modeling and control of HIV infection, Computa- tional and Mathematical Methods in Medicine, 2012 (2012), Article ID 893474, 17 pages.
- [44] C. Zeng and Q. Yang, A fractional order HIV internal viral dynamics model, CMES, 59(1) (2010), 65–77.
|