- [1] Z. Abdollahy, Y. Mahmoudi, A. S. Shamloo, and M. Baghmisheh, Haar Wavelets Method for Time Fractional Riesz Space Telegraph Equation with Separable Solution, Rep. Math. Phys., 89(1) (2022), 81–96.
- [2] R. Amin, K. Shah, M. Asif, I. Khan, and F. Ullah, An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet, J. Comput. Appl. Math., 381 (2021), 113028.
- [3] S. Arbabi, A. Nazari, and M. T. Darvishi A two-dimensional Haar wavelets method for solving systems of PDEs, Appl. Math. Comput., 292 (2017), 33-46.
- [4] I. Aziz and Siraj-ul-Islam, New algorithms for the numerical solution of nonlinear feredholm and volterra integral equations using Haar wavelets, J. Comput. Appl. Math., 239 (2013), 333–345.
- [5] A. Boggess and F. J. Narcowich, A First Course in Wavelets with Fourier Analysis, Prentice Hall, 2009.
- [6] F. Bulut, O¨ . Oru¸c, and A. Esen, Higher order Haar wavelet method integrated with strang splitting for solving regularized long wave equation, Math. Comput. Simul., 197 (2022), 0378–4754.
- [7] C. Chen and C. Hsiao, Haar wavelet method for solving lumped and distributed-parameter systems, IEE Proc. Control Theory Appl., 144(1) (1997), 87–94.
- [8] S. Haq and A. Ghafoor, An efficient numerical algorithm for multi-dimensional time dependent partial differential equations, Comput. Math. with Appl., 8 (2018), 2723–2734.
- [9] S. Heydary and A. Aminataei, Numerical solution of Drinfel’d–Sokolov system with the Haar wavelets method, Comput. Method Diff. Eq., 10(4) (2022), 1086-1096.
- [10] D. Hogham, An introduction to financial option valuation: mathematics, stochastics, and computation, Cambridge University Press, 2004.
- [11] J. Hull, Options, futures, and other derivatives, Pearson, 2018.
- [12] Y. Khan, M. Ghasemi, S. Vahdati, and M. Fardi, Legendre multi-wavelets to solve oscillating magnetic fields integro-differential equations, U.P.B. Sci. Bull., Series A, 76(1) (2014), 51–58.
- [13] D. Kumar and K. Deswal, Wavelet-based approximation for two-parameter singularly perturbed problems with Robin boundary conditions, J. Appl. Math. Comput., 68 (2022), 25–149.
- [14] U. Lepik and H. Hein, Haar Wavelets With Applications, Springer, 2014.
- [15] S. Pandit, Local radial basis functions and scale-3 Haar wavelets operational matrices based numerical algorithms for generalized regularized long wave model, Wave Motion, 109 (2022), 102846.
- [16] N. Pervaiz and I. Aziz, Haar wavelet approximation for the solution of cubic nonlinear Schrodinger equations, Phys. A: Stat. Mech. Appl., 545, (2020), 123738.
- [17] S. Ross, An elementary introduction to mathematical finance, Cambridge University Press, 2011.
- [18] U. Saeed and M. ur Rehman, Haar wavelet operational matrix method for fractional oscillation equations, Int. J. of Math. Math. Sci., 2014 (2014).
- [19] R. Singh, V. Guleria and M. Singh, Haar wavelet quasi linearization method for numerical solution of Em- den–Fowler type equations, Math. Comput. Simul., 174 (2020), 123–133.
- [20] Siraj ul Islam, I. Aziz, and A. S. Al-Fahid, An improved method based on Haar wavelets for numerical solution of nonlinear integral and integro-differential equations of first and higher orders, J. Comput. Appl. Math., 260 (2014), 449-469.
- [21] S. E. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Springer, 2004.
- [22] Swati, M. Singh, and K. Singh, An advancement approach of Haar wavelet method and Bratu-type equations, Appl. Numer. Math., 170 (2021), 74–82.
- [23] S. Vahdati, A wavelet method for stochastic Volterra integral equations and its application to general stock model, Comput. Method Diff. Eq., 5(2) (2017), 170–188.
- [24] S. Vahdati and D. Mirzaei, The Finite Points Approximation to the PDE Problems in Multi-Asset Options, CMES- Comput. Model. Eng. Sci., 109-110(3) (2015), 247–262.
- [25] A. K. Verma, M. K. Rawani and C. Cattani, A numerical scheme for a class of generalized Burgers equation based on Haar wavelet nonstandard finite difference method, Appl. Numer. Math., 168 (2021), 41–54.
- [26] H. A. Zedan and E. Alaidarous, Haar wavelet method for the system of integral equations, Abstr. Appl. Anal., 2014 (2014).
|