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Abstract

In this paper, we prove the existence and uniqueness of the solutions for a non-integer high order boundary
value problem which is subject to the Caputo fractional derivative. The boundary condition is a non-local type.
Analytically, we introduce the fractional Green’s function. The main principle applied to simulate our results
is the Banach contraction fixed point theorem. We deduce this paper by presenting some illustrative examples.

Furthermore, it is presented a numerical based semi-analytical technique to approximate the unique solution to

the desired order of precision.
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1. Preliminaries

Fractional calculus while standing for differential and integral equations, due to non-local property in behind, have
various applications in applied branches such as blood flow problems, anomalous diffusion, disease spread, control
processing, population dynamics, etc. for instance see [10, 18, 22–24, 26, 29, 34, 36].

The theory of fixed point to study the solution of the boundary value problems is a consequential tool and it is
played important role in both proving the existence of the solution and obtain it approximately, see [1–4, 7–9, 11–
13, 15–17, 20, 27, 30, 32]. It can be seen a lot of interest in researching the subject of nonlocal nonlinear fractional
order in boundary value problems in recent years.

In the article [35], the following result was established by considering the problem:{
y′′′ + Λ(t, y(t)) = 0, t ∈ (0, 1),
y(0) = y′(0) = 0, y(1) = γy(η),

(1.1)

with 0 < η < 1, γ ∈ R, Λ ∈ C([0, 1]× R,R) and Λ(t, 0) 6= 0.

Theorem 1.1. Assume that Λ : [0, 1] × R → R is a continuous mapping and follows a uniform Lipschitz inequality
with respect to y on [0, 1]× R, such that there is a constant L, where for every (t, y), (t, z) ∈ [0, 1]× R,

|Λ(t, y)− Λ(t, z)| ≤ L|y − z|.
If γη2 6= 1 such that

1 +
∣∣ γ

1− γη2

∣∣ < 3

L
, (1.2)

then there exists unique solution for Eq. (1.1).
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In reference [6], the author studied the fractional problem{
CDα

t u+ f(t, u(t), u′(t), u′′(t), u′′′(t)) = 0, t ∈ (0, 1),

u(0) = u′′(0) = u′′′(0) = 0, λu′(0) + (1− λ)u′(1) =
∫ 1

0
u(s)ds,

(1.3)

where 3 < α ≤ 4, 0 ≤ λ ≤ 1, CDα
t u is the Caputo fractional derivative and f : (0, 1)× R× R× R× R→ R is a given

continuous function. In the mentioned work, first, the existence and uniqueness of the solution have been proved and
then a numerical technique is given to reach the solution.

In our work, we intend to develop the above result by considering a high order fractional derivative of Caputo sense
(we consult the reader to see [21] for the definitions and basic consequences on non-integer order calculus) in the place
of the classical operator y′′′, i.e., we prove the existence of unique solutions for the following non-integer high-order
differential boundary value problem{

cD
ϑ
t w + g(t, w(t), w′(t)) = 0, t ∈ (0, 1),

w(0) = w′(0) = ... = w(m−2)(0) = 0, w(1) = γ1w(η) + γ2w
′(η),

(1.4)

where m− 1 < ϑ ≤ m, m ≥ 2, 0 < η < 1, γ1, γ2 ∈ R, cD
ϑ
t w is the Caputo fractional derivative and g ∈ C([0, 1]×R×

R,R) and g(t, 0, 0) 6= 0.
The topic of multi-point non-local boundary value equations has been come up by different researchers, follow

[5, 14, 25]. The multi-point boundary constraints arise in definite problems of physics, fluid mechanics, and wave
propagation, refer [31, 37] for the interest. The multi-point boundary constraints may be found out such that the
controllers at the end points spread or add energy with related sensors placed at middle-level positions. The third order
differential equations in which differentiation of acceleration is involved are called jerk (time derivative of acceleration)
equations and important for engineers and physicists, and they try to plan the vehicles in a way that jerk may be
minimum. The third order differential equations are known to be the generalization of fractional differential equations
with non-integer order. The fractional order goes through three, the considered equations possibly corresponds to jerk
equations.

The existence and uniqueness of solutions issue for non-linear multi-point boundary value equations have been
searched by number of researchers. For example, Rehman and Khan [33], Mehmood and Ahmad, [28] Haq et al. [19]
and references therein. In [28], the authors have proved the existence of a solution for non-integer order boundary
value equations with non-local multi- point boundary constraints by employing Shaefer type and Krasnoselskiis fixed
point theorems. The remaining article is arranged as follows. In Section 2, we estimate fractional Green’s function by
implementing integral equation formula and a few additional assumptions. Section 3 is assigned to the establishment
of the Green’s function. In section 4, we justify with the proof of our main theorem on the existence of a unique
solution of the considered problem. Also, we have given an example to utilize the adopted results. The conclusion is
set out in section 5.

2. Construction of the Green’s function

At the first instance, let us establish Green’s function for the following two-point boundary value constraint{
cD

ϑ
t u(t) + h(t) = 0, t ∈ (0, 1),

u(0) = u′(0) = ... = u(m−2)(0) = 0, u(1) = 0,
(2.1)

and afterwards, supposing that the solution of the following three-point boundary value problem{
cD

ϑ
t w(t) + h(t) = 0, t ∈ (0, 1),

w(0) = w′(0) = ... = w(m−2)(0) = 0, w(1) = γ1w(η) + γ2w
′(η),

(2.2)

can be stated as follows

w(t) = u(t) + u(η)

m−1∑
j=0

λjt
j , t ∈ (0, 1), (2.3)

where λjs are constants that will be specified, we will estimate Greens’s function for the equations (2.2).
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Lemma 2.1. If h : [0, 1]→ R is continuous mapping, then boundary value problem (2.1) admits unique solution

u(t) =

∫ 1

0

R(t, s)h(s)ds, (2.4)

where

R(t, s) =

{
tm−1(1−s)ϑ−1−(t−s)ϑ−1

Γ(ϑ) , 0 ≤ s ≤ t ≤ 1;
tm−1(1−s)ϑ−1

Γ(ϑ) , 0 ≤ t ≤ s ≤ 1.
(2.5)

Proof. It is well known that the problem (2.1) is similar to solving the integral equation

u(t) =

m−1∑
j=0

cjt
j − 1

Γ(ϑ)

∫ t

0

(t− s)ϑ−1h(s)ds, (2.6)

where cjs are some real constants. Using boundary conditions (2.1), we can obtain

c0 = c1 = ... = cm−2 = 0, cm−1 =
1

Γ(ϑ)

∫ 1

0

(1− s)ϑ−1h(s)ds. (2.7)

Thus, we get

u(t) =
tm−1

Γ(ϑ)

∫ 1

0

(1− s)ϑ−1h(s)ds− 1

Γ(ϑ)

∫ t

0

(t− s)ϑ−1h(s)ds

=
tm−1

Γ(ϑ)

∫ t

0

(1− s)ϑ−1h(s)ds+
tm−1

Γ(ϑ)

∫ 1

t

(1− s)ϑ−1h(s)ds− 1

Γ(ϑ)

∫ t

0

(t− s)ϑ−1h(s)ds

=

∫ t

0

tm−1(1− s)ϑ−1 − (t− s)ϑ−1

Γ(ϑ)
h(s)ds+

∫ 1

t

tm−1(1− s)ϑ−1

Γ(ϑ)
h(s)ds

=

∫ 1

0

R(t, s)h(s)ds. (2.8)

The uniqueness follows from the assumption, that the completely homogeneous boundary value problem has only the
trivial solution. Hence Lemma 2.1 has proved. �

Theorem 2.2. Let h : [0, 1] → R is a continuous mapping, if γ1η
m−1 + (m − 1)γ2η

m−2 6= 1 then boundary value
problem (2.2) admits unique solution

w(t) =

∫ 1

0

G(t, s)h(s)ds, (2.9)

where

G(t, s) = R(t, s) +
tm−1

1− γ1ηm−1 − (m− 1)γ2ηm−2

[
γ1R(η, s) + γ2

∂R(η, s)

∂t

]
. (2.10)

Proof. Let

w(t) = u(t) + u(η)

m−1∑
j=0

λjt
j , (2.11)

where λjs are constants that will be identified using boundary conditions (2.2) and

u(t) =

∫ 1

0

R(t, s)h(s)ds, u′(t) =

∫ 1

0

∂R(t, s)

∂t
h(s)ds

So,

dkw

dtk

∣∣∣∣
t=0

= 0, k = 0, 1, ...,m− 2. (2.12)
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Then, we get λ0 = λ1 = ... = λm−2 = 0, because dku
dtk

∣∣∣∣
t=0

= 0, for k = 0, 1, ...,m − 2. To obtain λm−1, use

w(1) = γ1w(η) + γ2w
′(η), therefore we set

u(1) + u(η)λm−1 = γ1

(
u(η) + u(η)λm−1η

m−1
)

+ γ2

(
u′(η) + (m− 1)u(η)λm−1η

m−2
)
,

hence, from u(1) = 0,

u(η)λm−1 =
γ1u(η) + γ2u

′(η)

1− γ1ηm−1 − (m− 1)γ2ηm−2
. (2.13)

Therefore, from (2.11),

w(t) = u(t) +
[γ1u(η) + γ2u

′(η)] tm−1

1− γ1ηm−1 − (m− 1)γ2ηm−2
, (2.14)

and then

w(t) =

∫ 1

0

R(t, s)h(s)ds+
γ1t

m−1

1− γ1ηm−1 − (m− 1)γ2ηm−2

∫ 1

0

R(η, s)h(s)ds

+
γ2t

m−1

1− γ1ηm−1 − (m− 1)γ2ηm−2

∫ 1

0

∂R(η, s)

∂t
h(s)ds

=

∫ 1

0

[
R(t, s) +

γ1t
m−1

1− γ1ηm−1 − (m− 1)γ2ηm−2
R(η, s)

+
γ2t

m−1

1− γ1ηm−1 − (m− 1)γ2ηm−2

∂R(η, s)

∂t

]
h(s)ds

=

∫ 1

0

G(t, s)h(s)ds. (2.15)

Let us derive the proof of uniqueness. Let z(t) is also a solution of Eq. (2.2), that is{
cD

ϑ
t z(t) + h(t) = 0, t ∈ (0, 1),

z(0) = z′(0) = ... = z(m−2)(0) = 0, z(1) = γ1z(η) + γ2z
′(η),

(2.16)

Let Ω(t) = w(t)− z(t), Due to linearity property of Caputo’s non-integer order derivative, we have

cD
ϑ
t Ω(t) =c D

ϑ
t w(t)−c Dϑ

t z(t) = −h(t) + h(t) = 0.

Therefore, Ω(t) =
∑m−1
j=0 cjt

j where cjs are some real constants that we will specify. If we take derivative from

Ω(t) = w(t)− z(t), (m− 2) times

dkΩ

dtk

∣∣∣∣
t=0

=
dkw

dtk

∣∣∣∣
t=0

− dkz

dtk

∣∣∣∣
t=0

= 0− 0 = 0, k = 0, 1, ...,m− 2, (2.17)

then they yield c0 = c1 = ... = cm−2 = 0, and hence

Ω(t) = cm−1t
m−1.

By definition and the last boundary condition, we have

cm−1 = Ω(1)

= w(1)− z(1)

= γ1w(η) + γ2w
′(η)− γ1z(η)− γ2z

′(η)

= γ1Ω(η) + γ2Ω′(η)

= γ1cm−1η
m−1 + (m− 1)γ2cm−1η

m−2

which implies

cm−1

(
1− γ1η

m−1 − (m− 1)γ2η
m−2

)
= 0,
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since γ1η
m−1 + (m− 1)γ2η

m−2 6= 1 from assumption then cm−1 = 0 and the proof is complete. �

3. The estimation of Green’s function

Lemma 3.1. Let R(t, s) be the Green’s function given in Lemma 2.1. Then∫ 1

0

|R(t, s)|ds ≤ 2

Γ(ϑ+ 1)
, (3.1)

and ∫ 1

0

∣∣∣∣∂R(t, s)

∂t

∣∣∣∣ ds ≤ m+ ϑ− 1

Γ(ϑ+ 1)
, (3.2)

for t ∈ [0, 1].

Proof. It is clearly seen that∫ 1

0

|R(t, s)|ds =

∫ t

0

|R(t, s)|ds+

∫ 1

t

|R(t, s)|ds

=

∫ t

0

∣∣ tm−1(1− s)ϑ−1 − (t− s)ϑ−1

Γ(ϑ)

∣∣ds+

∫ 1

t

∣∣ tm−1(1− s)ϑ−1

Γ(ϑ)

∣∣ds
≤

∫ t

0

tm−1(1− s)ϑ−1 + (t− s)ϑ−1

Γ(ϑ)
ds+

∫ 1

t

tm−1(1− s)ϑ−1

Γ(ϑ)
ds

=
tm−1

(
1− (1− t)ϑ

)
+ tϑ

Γ(ϑ+ 1)
+
tm−1(1− t)ϑ

Γ(ϑ+ 1)

=
tm−1 + tϑ

Γ(ϑ+ 1)

≤ 2

Γ(ϑ+ 1)
. (3.3)

Moreover, after taking derivative from R(t, s) with respect to t, we receive∫ 1

0

∣∣∣∣∂R(t, s)

∂t

∣∣∣∣ ds =

∫ t

0

∣∣∣∣∂R(t, s)

∂t

∣∣∣∣ ds+

∫ 1

t

∣∣∣∣∂R(t, s)

∂t

∣∣∣∣ ds
=

∫ t

0

∣∣ (m− 1)tm−2(1− s)ϑ−1 − (ϑ− 1)(t− s)ϑ−2

Γ(ϑ)

∣∣ds
+

∫ 1

t

∣∣ (m− 1)tm−2(1− s)ϑ−1

Γ(ϑ)

∣∣ds
≤

∫ t

0

(m− 1)tm−2(1− s)ϑ−1 + (ϑ− 1)(t− s)ϑ−2

Γ(ϑ)
ds

+

∫ 1

t

(m− 1)tm−2(1− s)ϑ−1

Γ(ϑ)
ds

=
(m− 1)tm−2

(
1− (1− t)ϑ

)
Γ(ϑ+ 1)

+
tϑ−1

Γ(ϑ)
+

(m− 1)tm−2(1− t)ϑ

Γ(ϑ+ 1)

=
(m− 1)tm−2

Γ(ϑ+ 1)
+
tϑ−1

Γ(ϑ)

≤ m− 1

Γ(ϑ+ 1)
+

1

Γ(ϑ)
=
m+ ϑ− 1

Γ(ϑ+ 1)
. (3.4)

�
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Theorem 3.2. Let G(t, s) be the Green’s function given in Theorem 2.2. Then it satisfies∫ 1

0

|G(t, s)|ds ≤ 1

Γ(ϑ+ 1)

(
2 +

2|γ1|+ (m+ ϑ− 1)|γ2|
|1− γ1ηm−1 − (m− 1)γ2ηm−2|

)
, (3.5)

for t ∈ [0, 1].

Proof. It is easily observed, by the help of Lemma 3.1, that∫ 1

0

|G(t, s)|ds =

∫ 1

0

∣∣∣∣R(t, s) +
tm−1

1− γ1ηm−1 − (m− 1)γ2ηm−2

[
γ1R(η, s) + γ2

∂R(η, s)

∂t

]∣∣∣∣ ds
≤
∫ 1

0

∣∣R(t, s)
∣∣ds+

∣∣∣∣ γ1t
m−1

1− γ1ηm−1 − (m− 1)γ2ηm−2

∣∣∣∣ ∫ 1

0

∣∣R(η, s)
∣∣ds

+

∣∣∣∣ γ2t
m−1

1− γ1ηm−1 − (m− 1)γ2ηm−2

∣∣∣∣ ∫ 1

0

∣∣∂R(η, s)

∂t

∣∣ds
≤ 2

Γ(ϑ+ 1)
+

∣∣∣∣ γ1

1− γ1ηm−1 − (m− 1)γ2ηm−2

∣∣∣∣ 2

Γ(ϑ+ 1)

+

∣∣∣∣ γ2

1− γ1ηm−1 − (m− 1)γ2ηm−2

∣∣∣∣ m+ ϑ− 1

Γ(ϑ+ 1)

≤ 1

Γ(ϑ+ 1)

(
2 +

2|γ1|+ (m+ ϑ− 1)|γ2|
|1− γ1ηm−1 − (m− 1)γ2ηm−2|

)
,

(3.6)

and the proof is established. �

Theorem 3.3. Let G(t, s) be the Green’s function given in Theorem 2.2. Then it satisfies∫ 1

0

∣∣∣∣∂G(t, s)

∂t

∣∣∣∣ ds ≤ m− 1

Γ(ϑ+ 1)

(
1 +

ϑ

m− 1
+

(2|γ1|+ (m+ ϑ− 1)|γ2|)
|1− γ1ηm−1 − (m− 1)γ2ηm−2|

)
, (3.7)

for t ∈ [0, 1].

Proof. Eq. (2.10) implies that

∂G(t, s)

∂t
=
∂R(t, s)

∂t
+

(m− 1)tm−2

1− γ1ηm−1 − (m− 1)γ2ηm−2

[
γ1R(η, s) + γ2

∂R(η, s)

∂t

]
. (3.8)

Now, as the same as the proof of the previous theorem, it is easily observed, by the help of Lemma 3.1, that∫ 1

0

∣∣∣∣∂G(t, s)

∂t

∣∣∣∣ ds =

∫ 1

0

∣∣∣∣∂R(t, s)

∂t
+

(m− 1)tm−2

1− γ1ηm−1 − (m− 1)γ2ηm−2

[
γ1R(η, s) + γ2

∂R(η, s)

∂t

]∣∣∣∣ ds (3.9)

≤
∫ 1

0

∣∣∂R(t, s)

∂t

∣∣ds+

∣∣∣∣ γ1(m− 1)tm−2

1− γ1ηm−1 − (m− 1)γ2ηm−2

∣∣∣∣ ∫ 1

0

∣∣R(η, s)
∣∣ds

+

∣∣∣∣ γ2(m− 1)tm−2

1− γ1ηm−1 − (m− 1)γ2ηm−2

∣∣∣∣ ∫ 1

0

∣∣∂R(η, s)

∂t

∣∣ds
≤ m+ ϑ− 1

Γ(ϑ+ 1)
+

∣∣∣∣ γ1(m− 1)

1− γ1ηm−1 − (m− 1)γ2ηm−2

∣∣∣∣ 2

Γ(ϑ+ 1)

+

∣∣∣∣ γ2(m− 1)

1− γ1ηm−1 − (m− 1)γ2ηm−2

∣∣∣∣ m+ ϑ− 1

Γ(ϑ+ 1)

≤ m− 1

Γ(ϑ+ 1)

(
1 +

ϑ

m− 1
+

(2|γ1|+ (m+ ϑ− 1)|γ2|)
|1− γ1ηm−1 − (m− 1)γ2ηm−2|

)
,

(3.10)
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and the proof is established. �

4. Existence and uniqueness of the solution

Theorem 4.1. Assume that g : [0, 1] × R × R → R is continuous and follows a uniform Lipschitz inequality with
respect to (w,w′) on [0, 1]× R× R, such that there is a constant L, for every (t, ω1, ω2), (t,$1, $2) ∈ [0, 1]× R× R,∣∣g(t, ω1, ω2)− g(t,$1, $2)

∣∣ ≤ L (∣∣ω1 −$1

∣∣+
∣∣ω2 −$2

∣∣) . (4.1)

If γ1η
m−1 + (m− 1)γ2η

m−2 6= 1 and

1 +m+ ϑ+
2m|γ1|+m(m+ ϑ− 1)|γ2|
|1− γ1ηm−1 − (m− 1)γ2ηm−2|

<
Γ(ϑ+ 1)

L
, (4.2)

then there exists unique solution for the boundary value problem (1.4).

Proof. Assume that X be the Banach space of continuously differentiable mappings on [0, 1] with standard norm

‖w‖ = ‖w‖∞ + ‖w′‖∞ = max{|w(t)| : 0 ≤ t ≤ 1}+max{|w′(t)| : 0 ≤ t ≤ 1}. (4.3)

Note that w(t) is a solution of (1.4) if and only if it is a solution of (2.2) with h(t) = g(t, w(t), w′(t)). But Eq. (2.2)
has the unique solution

w(t) =

∫ 1

0

G(t, θ)g(θ, w(θ), w′(θ))dθ

where G(t, θ) is specified in (2.10). Derive the operator T : X → X by

Tw(t) =

∫ 1

0

G(t, θ)g(θ, w(θ), w′(θ))dθ, (4.4)

for t ∈ [0, 1]. By taking derivative with respect to t, we have

(Tw)′(t) =

∫ 1

0

∂G(t, θ)

∂t
g(θ, w(θ), w′(θ))dθ, (4.5)

as well. We now apply Banach fixed point theorem to demonstrate the operator T has the unique fixed point. Assume
w, z ∈ X, then

|Tw(t)− Tz(t)| =

∣∣∣∣∫ 1

0

G(t, θ) (g(θ, w(θ), w′(θ))− g(θ, z(θ), z′(θ))) dθ

∣∣∣∣
≤

∫ 1

0

|G(t, θ)| |g(θ, w(θ), w′(θ))− g(θ, z(θ), z′(θ))| dθ

≤
∫ 1

0

|G(t, θ)|L (|w(θ)− z(θ)|+ |w′(θ)− z′(θ)|) dθ

≤ L(‖w − z‖∞ + ‖w′ − z′‖∞)

∫ 1

0

|G(t, θ)| dθ

≤ ‖w − z‖ L

Γ(ϑ+ 1)

(
2 +

2|γ1|+ (m+ ϑ− 1)|γ2|
|1− γ1ηm−1 − (m− 1)γ2ηm−2|

)
,

(4.6)
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where we have utilized Theorem 3.2. In the same way, suppose w, z ∈ X, then

|(Tw)′(t)− (Tz)′(t)| =

∣∣∣∣∫ 1

0

∂G(t, θ)

∂t
(g(θ, w(θ), w′(θ))− g(θ, z(θ), z′(θ))) dθ

∣∣∣∣ (4.7)

≤
∫ 1

0

∣∣∣∣∂G(t, θ)

∂t

∣∣∣∣ |g(θ, w(θ), w′(θ))− g(θ, z(θ), z′(θ))| dθ

≤
∫ 1

0

∣∣∣∣∂G(t, θ)

∂t

∣∣∣∣L (|w(θ)− z(θ)|+ |w′(θ)− z′(θ)|) dθ

≤ L(‖w − z‖∞ + ‖w′ − z′‖∞)

∫ 1

0

∣∣∣∣∂G(t, θ)

∂t

∣∣∣∣ dθ
≤ ‖w − z‖ (m− 1)L

Γ(ϑ+ 1)

(
1 +

ϑ

m− 1
+

(2|γ1|+ (m+ ϑ− 1)|γ2|)
|1− γ1ηm−1 − (m− 1)γ2ηm−2|

)
,

(4.8)

where we have utilized Theorem 3.3. To sum up inequalities (4.6) and (4.7) results in

‖Tw − Tz‖ = ‖Tw − Tz‖∞ + ‖(Tw)′ − (Tz)′‖ ≤ ψ‖w − z‖, (4.9)

where

ψ =
L

Γ(ϑ+ 1)

(
2 +

2|γ1|+ (m+ ϑ− 1)|γ2|
|1− γ1ηm−1 − (m− 1)γ2ηm−2|

)
+

(m− 1)L

Γ(ϑ+ 1)

(
1 +

ϑ

m− 1
+

(2|γ1|+ (m+ ϑ− 1)|γ2|)
|1− γ1ηm−1 − (m− 1)γ2ηm−2|

)
=

L

Γ(ϑ+ 1)

(
1 +m+ ϑ+

2m|γ1|+m(m+ ϑ− 1)|γ2|
|1− γ1ηm−1 − (m− 1)γ2ηm−2|

)
. (4.10)

By assumption (4.2), we conclude that ψ < 1, therefore we deduce that T is a contraction mapping on X, and by the
Banach contraction mapping theorem we receive the asked result. �

5. Illustrative examples

Here we recall some examples to show the usefulness of our derived outputs.

Example 5.1. Consider the following high order fractional boundary value problem{
cD

3.5
t w + β1

2w(t)
1+cosh(w(t)) + β2 exp(− cos2(w′(t))) + sin

(
t2
)

= 0, t ∈ (0, 1), β1, β2 > 0,

w(0) = w′(0) = w′′(0) = 0, w(1) = 3
4w( 1

2 ) + 1
4w
′( 1

2 ).
(5.1)

We have m = 4, ϑ = 3.5, η = 1
2 , γ1 = 3

4 , γ2 = 1
4 and

g(t, w(t), w′(t)) = β1
2w(t)

1 + cosh (w(t))
+ β2 exp(− cos2(w′(t))) + sin

(
t2
)
. (5.2)

It is obviously observed

|g(t, w(t), w′(t))− g(t, z(t), z′(t))| =

∣∣∣∣β1
2w(t)

1 + cosh (w(t))
+ β2 exp(− cos2(w′(t))) + sin

(
t2
)

(5.3)

−β1
2z(t)

1 + cosh (z(t))
− β2 exp(− cos2(z′(t)))− sin

(
t2
)∣∣∣∣

≤ β1

∣∣∣∣ 2w(t)

1 + cosh (w(t))
− 2z(t)

1 + cosh (z(t))

∣∣∣∣
+β2

∣∣exp(− cos2(w′(t)))− exp(− cos2(z′(t)))
∣∣

≤ β1 |w(t)− z(t)|+ β2 |w′(t)− z′(t)|
≤ max{β1, β2} (|w(t)− z(t)|+ |w′(t)− z′(t)|) , (5.4)
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So, g is Lipschitz with respect to w on [0, 1]×R×R, with Lipschitz constant L = max{β1, β2}. Since γ1η
m−1 + (m−

1)γ2η
m−2 = 3

4 ( 1
2 )3 + 3 1

4 ( 1
2 )2 = 9

32 6= 1, the assumption of Theorem 4.1 holds and more

1 +m+ ϑ+
2m|γ1|+m(m+ ϑ− 1)|γ2|
|1− γ1ηm−1 − (m− 1)γ2ηm−2|

=
1191

46
, (5.5)

so, if we have 1191
46 < Γ(4.5)

L or equivalently L < 805
√
π

3176 ' 0.4492523142251072 then the other assumption of Theorem
4.1 holds as well. Now, an application of Theorem 4.1 proves that the problem (5.1) has unique solution. For instance,
consider the problem (5.1) with β1 = β2 = 0.4 i.e.{

cD
3.5
t w + 0.8w(t)

1+cosh(w(t)) + 0.4 exp(− cos2(w′(t))) + sin
(
t2
)

= 0, t ∈ (0, 1),

w(0) = w′(0) = w′′(0) = 0, w(1) = 3
4w( 1

2 ) + 1
4w
′( 1

2 ).
(5.6)

dose have unique solution.

Example 5.2. Consider another high order fractional boundary value problem as follows:{
cD

4.5
t w + β w(t)

1+w(t)2 + exp (t) = 0, t ∈ (0, 1), β > 0,

w(0) = w′(0) = w′′(0) = w′′′(0) = 0, w(1) = 0.
(5.7)

We have m = 5, ϑ = 4.5, γ1 = γ2 = 0 and

g(t, w(t), w′(t)) = β
w(t)

1 + w(t)2
+ exp (t) . (5.8)

It is obviously seen

|g(t, w(t), w′(t))− g(t, z(t), z′(t))| =

∣∣∣∣β w(t)

1 + w(t)2
+ exp (t)− β z(t)

1 + z(t)2
− exp (t)

∣∣∣∣ (5.9)

≤ β
∣∣∣∣ w(t)

1 + w(t)2
− z(t)

1 + z(t)2

∣∣∣∣
≤ β (|w(t)− z(t)|+ |w′(t)− z′(t)|) , (5.10)

Therefore, g is Lipschitz with respect to w on [0, 1] × R × R, with Lipschitz constant L = β. Since γ1η
m−1 + (m −

1)γ2η
m−2 = 0 6= 1, the assumption of Theorem 4.1 holds and more

1 +m+ ϑ+
2m|γ1|+m(m+ ϑ− 1)|γ2|
|1− γ1ηm−1 − (m− 1)γ2ηm−2|

=
21

2
, (5.11)

hence, if we have 21
2 < Γ(5.5)

β or equivalently β < 45
√
π

16 ' 4.985026455671764 then the other assumption of Theorem

4.1 holds as well. Now, an application of Theorem 4.1 proves that the problem (5.7) has unique solution. For instance,
consider the problem (5.7) with β = 1 i.e.{

cD
4.5
t w + w(t)

1+w(t)2 + exp (t) = 0, t ∈ (0, 1),

w(0) = w′(0) = w′′(0) = w′′′(0) = 0, w(1) = 0.
(5.12)

dose have unique solution.

6. Numerical procedure

In this section, we focus on the numerical solution of the problem (1.4) which we have already proved the existence
and the uniqueness of the solution by some assumptions. The method is somewhat straightforward via remembering
Lemma 2.1 and Theorem 2.2 and recurrence formula

wk+1(t) =

∫ 1

0

G(t, θ)g(θ, wk(θ), w′k(θ))dθ, (6.1)
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or equivalently

wk+1(t) =

∫ 1

0

R(t, θ)g(θ, wk(θ), w′k(θ))dθ +
tm−1

1− γ1ηm−1 − (m− 1)γ2ηm−2
(6.2)

×
∫ 1

0

[
γ1R(η, s) + γ2

∂R(η, s)

∂t

]
g(θ, wk(θ), w′k(θ))dθ

=
tm−1

Γ(ϑ)

∫ 1

0

(1− θ)ϑ−1g(θ, wk(θ), w′k(θ))dθ − 1

Γ(ϑ)

∫ t

0

(t− θ)ϑ−1g(θ, wk(θ), w′k(θ))dθ

+
ηm−1

Γ(ϑ)

γ1t
m−1

1− γ1ηm−1 − (m− 1)γ2ηm−2

∫ 1

0

(1− θ)ϑ−1g(θ, wk(θ), w′k(θ))dθ

− 1

Γ(ϑ)

γ1t
m−1

1− γ1ηm−1 − (m− 1)γ2ηm−2

∫ η

0

(η − θ)ϑ−1g(θ, wk(θ), w′k(θ))dθ (6.3)

+
(m− 1)ηm−2

Γ(ϑ)
× γ2t

m−1

1− γ1ηm−1 − (m− 1)γ2ηm−2

∫ 1

0

(1− θ)ϑ−1g(θ, wk(θ), w′k(θ))dθ

−ϑ− 1

Γ(ϑ)

γ2t
m−1

1− γ1ηm−1 − (m− 1)γ2ηm−2

∫ η

0

(η − θ)ϑ−2g(θ, wk(θ), w′k(θ))dθ,

(6.4)

where we have used the proof of Lemma 2.1. In the other words, briefly

wk+1(t) = − 1

Γ(ϑ)

∫ t

0

(t− θ)ϑ−1g(θ, wk(θ), w′k(θ))dθ +

[
tm−1

Γ(ϑ)
+

γ1(ηt)m−1 + (m− 1)γ2η
m−2tm−1

Γ(ϑ)(1− γ1ηm−1 − (m− 1)γ2ηm−2)

]
(6.5)

×
∫ 1

0

(1− θ)ϑ−1g(θ, wk(θ), w′k(θ))dθ

−
∫ η

0

[
γ1t

m−1(η − θ)ϑ−1 + γ2(ϑ− 1)tm−1(η − θ)ϑ−2
]
g(θ, wk(θ), w′k(θ))dθ

Γ(ϑ)(1− γ1ηm−1 − (m− 1)γ2ηm−2)
.

This recurrence formula can be easily applied by the initial guess belonging to the C1[0, 1], say for example u0(t) ≡ 0,
and then it can be terminated by a criteria like for example ‖uk+1 − uk‖ ≤ ε. In order to easily implementing the
iteration process while avoiding the boring and slowly symbolic computations, we suggest the following resolution

wk+1(t) = − 1

Γ(ϑ)

mt∑
j=1

stj(t− θtj)ϑ−1g(θtj , wk(θtj), w
′
k(θtj)) +

[
tm−1

Γ(ϑ)
+

γ1(ηt)m−1 + (m− 1)γ2η
m−2tm−1

Γ(ϑ)(1− γ1ηm−1 − (m− 1)γ2ηm−2)

]

×
m∑
j=1

sj(1− θj)ϑ−1g(θj , wk(θj), w
′
k(θj))

−
∑mη
j=1 sj

[
γ1t

m−1(η − θj)ϑ−1 + γ2(ϑ− 1)tm−1(η − θj)ϑ−2
]
g(θj , wk(θj), w

′
k(θj))

Γ(ϑ)(1− γ1ηm−1 − (m− 1)γ2ηm−2)
,

(6.6)

where we have used the composite Simpson’s integration rule in both integrals. Notice that stj and θtj in the first
summation denote that the Simpson’s weights and nodes depend on t because of the integration interval of the first
integral i.e. (0, t). Now, we apply central-difference formula for first derivative which is of order O(h2) in where h is
the uniform distance between nodes.

w′(tq) ≈
w(tq+1)− w(tq−1)

2h
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Figure 1. The diagram of numerical solution for Example 5.2.

Setting the above formulas in Eq. (6.6), we obtain

wk+1(t) = − 1

Γ(ϑ)

mt∑
j=1

stj(t− θtj)ϑ−1g

(
θtj , wk(θtj),

wk(θtj+1)− wk(θtj−1)

2ht

)

+

[
tm−1

Γ(ϑ)
+

γ1(ηt)m−1 + (m− 1)γ2η
m−2tm−1

Γ(ϑ)(1− γ1ηm−1 − (m− 1)γ2ηm−2)

]
×

m∑
j=1

sj(1− θj)ϑ−1g

(
θj , wk(θj),

wk(θj+1)− wk(θj−1)

2h

)

−

∑mη
j=1 sj

[
γ1t

m−1(η − θj)ϑ−1 + γ2(ϑ− 1)tm−1(η − θj)ϑ−2
]
g
(
θj , wk(θj),

wk(θj+1)−wk(θj−1)
2h

)
Γ(ϑ)(1− γ1ηm−1 − (m− 1)γ2ηm−2)

,

(6.7)

6.1. Numerical experiment. As an example, to verify the validity of the presented numerical method, consider that
Example 5.2 In this example, consider β = 1, i.e. Eq. (5.12) for the simplicity but indeed β can be variety of numbers
in feasible range, namely 0 ≤ β < 4.985026455671764. The explicit exact closed form solution is unknown indeed, but
the criteria used for stopping the iteration process is set ‖uk+1 − uk‖∞ < 10−10, and then the numerical solution is
obtained. The numerical solutions for different is shown graphically in the Figure 1.

7. Conclusion

We have applied the Banach contraction mapping theorem to prove the existence and the uniqueness of the solution
to a kind of high-order nonlinear fractional differential equations involving Caputo fractional derivative whose boundary
one of boundary condition is nonlocal. In conclusion, we have given some sufficient conditions which show the existence
and uniqueness of solutions for a non-integer order boundary value problem. Some examples confirm if the derived
results can be valid. Furthermore, we have given a stable and convergence numerical technique to approximate the
solution and an illustrative example has been presented graphically.
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