تعداد نشریات | 43 |
تعداد شمارهها | 1,275 |
تعداد مقالات | 15,742 |
تعداد مشاهده مقاله | 51,851,366 |
تعداد دریافت فایل اصل مقاله | 14,681,986 |
حذف آلاینده 4- نیتروفنول به روش راکتور بیولوژیکی بستر متحرک با مدیایBee Cell 2000 و مطالعه شوکپذیری راکتور | ||
نشریه مهندسی عمران و محیط زیست دانشگاه تبریز | ||
مقاله 3، دوره 53.3، شماره 112، آذر 1402، صفحه 23-36 اصل مقاله (970.66 K) | ||
نوع مقاله: مقاله کامل پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/jcee.2022.51946.2153 | ||
نویسندگان | ||
مهدی قادری؛ علی عطارزاده* | ||
گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه صنعتی قم | ||
چکیده | ||
هشدارهای زیستمحیطی مرتبط با صنعت در سالهای گذشته اهمیّت زیادی پیدا کردهاند که منجر به افزایش سرمایهگذاری برای حفاظت از محیطزیست شده. آلایندههای نفتی مانند 4- نیتروفنول (Nitrophenol (4-NP)) از مشکلات اجتناب ناپذیری است که کشورهای نفت خیز با آن مواجه هستند. لذا یافتن راهبردی برای حذف ارزان قیمت این آلایندهها از پساب، یکی از اولویت های اصلی صنعت نفت و محیطزیست جهانی است. یکی از روشهایی که برای تصفیه فاضلاب آلوده به 4- نیتروفنول به کار می رود، استفاده از راکتورهای بیوفیلم بستر متحرک (Moving Bed Biological Reactor (MBBR)) است. پژوهش حاضر تلاش کرده تا محیط MBBR را برای تصفیه فاضلاب آلوده به 4- نیتروفنول با استفاده از مدیای Bee Cell 2000 بررسی و شرایط بهینه گرمایی را برای این محیط تعیین و گزارش کند. ابتدا میکروارگانیسمها با آلایندهها سازگار شدند و سپس یک لایه بیوفیلم بر روی سطح محیط آکنه در راکتور تشکیل شد. به دنبال آن، با تغییر در غلظت COD اولیه (300-3000 میلیگرم در لیتر)، زمان ماند (8، 12، 24 و 48 ساعت)، دما (20، 25 درجه سانتیگراد) و نسبت پر شدن (30، 50 و 70 درصد) بازدهی راکتور تعیین و مقایسه شد. بالاترین راندمان در 48 ساعت برابر 98 درصد برای راکتور با آکنه Bee Cell 2000 در نسبت پر شدن 50 درصد و در کمترین غلظت COD ورودی (400 میلی گرم در لیتر) مشاهده شد. راکتور در زمان ماند 84 ساعت قادر به تصفیه فاضلاب آلوده به 4- نیتروفنول در دمای 20 درجه سانتیگراد بود. همچنین با بررسی سینتک واکنش مشخص گردید این فرآیند از مدل سینتیک اصلاح شده مرتبه دوم Stover-Kincannon پیروی میکند. | ||
کلیدواژهها | ||
آلاینده نفتی؛ 4- نیتروفنول؛ مدیا؛ راکتور بیوفیلمی بستر متحرک؛ شوک؛ Bee Cell 2000 | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
آیتی ب، گنجی دوست ح، دلنواز م، "کاربرد راکتورهای بیوفیلمی با بستر متحرک (MBBR) در تصفیه فاضلاب های شهری و صنعتی"، مرکز نشر آثار علمی دانشگاه تربیت مدرس، تهران، 1389.
حائری ح، پژوم شریعتی ف، قادری ف، "استفاده از راکتور بیولوژیکی MBBR حاوی مدیای Kaldness در تصفیه نفتاب"، نشریه مهندسی عمران و محیط زیست دانشگاه تبریز، 1400، 51 (2)، 41-49. https://doi.org/10.22034/jcee.2020.25824.1621
دلنواز م، آیتی ب، گنجی دوست ح، "سینتیک واکنش تصفیه فاضلاب حاوی آنیلین در راکتور بیوفیلمی با بستر متحرک"، مجله سلامت و محیط، 1388، 2 (1)، 76-87.
Ayati B, Ganjidoust H, Fattah MM, “Degradation of aromatic compounds using moving bed biofilm reactors”, Journal of Environmental Health Science & Engineering, 2007, 4 (2), 107-112. Abdelhamid HN, “High performance and ultrafast reduction of 4-nitrophenol using metal-organic frameworks”, Journal of Environmental Chemical Engineering, 2021, 9 (1), 104404. https://doi.org/10.1016/j.jece.2020.104404. Barreca S, Colmenares JJV, Pace A, Orecchio S, Pulgarin C, “Neutral solar photo-Fenton degradation of 4-nitrophenol on iron-enriched hybrid montmorillonite-alginate beads (Fe-MABs)”, Journal of Photochemistry and Photobiology A: Chemistry, 2014, 282, 33-40. https://doi.org/10.1016/j.jphotochem.2014.02.008. Cunha GDC, Silva IAA, Alves JR, Oliveira RVM, Menezes THS, Romão LP, “Magnetic hybrids synthesized from agroindustrial byproducts for highly efficient removal of total chromium from tannery effluent and catalytic reduction of 4-nitrophenol”, Cellulose, 2018, 25 (12), 7409-7422. https://doi.org/10.1007/s10570-018-2046-2. Dong Z, Lu M, Huang W, Xu X, “Treatment of oilfield wastewater in moving bed biofilm reactors using a novel suspended ceramic biocarrier”, Journal of hazardous materials, 2011, 196, 123-130. https://doi.org/10.1016/j.jhazmat.2011.09.001. Delnavaz M, Ayati B, Ganjidoust H, “Biodegradation of aromatic amine compounds using moving bed biofilm reactors”, Iranian Journal of Environmental Health Science & Engineering, 2008, 5(4), 243-250. Ding Q, Kang Z, Cao L, Lin M, Lin H, Yang DP, “Conversion of waste eggshell into difunctional Au/CaCO3 nanocomposite for 4-Nitrophenol electrochemical detection and catalytic reduction”, Applied Surface Science, 2020, 510, 145526. https://doi.org/10.1016/j.apsusc.2020.145526. Din MI, Khalid R, Hussain Z, Hussain T, Mujahid A, Najeeb J, Izhar F, “Nanocatalytic assemblies for catalytic reduction of nitrophenols: a critical review”, Critical reviews in analytical chemistry, 2020, 50 (4), 322-338. https://doi.org/10.1080/10408347.2019.1637241. Ebrahimi Ghadi M, Qaderi F, Babanezhad E, “Prediction of mortality resulted from NO2 concentration in Tehran by Air Q+ software and artificial neural network”, International Journal of Environmental Science and Technology, 2019, 16 (3), 1351-1368, https://doi.org/10.1007/s13762-018-1818-4. Greenberg AE, Clescerl LS, Eaton AD, “Standard methods for the examination of water and wastewater”, 20th Edition, American Public Health, Washington, 2000. Ghaderi M, Tamadoni A, Mahdizadeh A, “introducing an applied reactor for treatment of wastewater containing propylene glycol”, SN Applied Sciences, 2019, 1 (12), 1-14. https://doi.org/10.1007/s42452-019-1638-2. Gzar HA, Al-Rekabi WS, Shuhaieb ZK, “Applicaion of Moving Bed Biofilm Reactor (MBBR) for Treatment of Industrial Wastewater: A Mini-Review”, Journal of Physics: Conference Series, 2021, 1973 (1), 012024. https://doi.org/10.1088/1742-6596/1973/1/012024. Gao XY, Liu RL, Ma J, Zhan HY, Zhang ZQ, “Combined dual-metal templates for fabrication of magnetic hierarchical porous carbon for highly efficient removal of 4-nitrophenol”, Journal of Porous Materials, 2016, 23 (1), 157-164. https://doi.org/10.1007/s10934-015-0066-y. Grau P, Dohanyos M, Chudoba J, “Kinetics of multicomponent substrate removal by activated sludge”, Water Research, 1975, 9 (7), 637-642. https://doi.org/10.1016/0043-1354(75)90169-4. Ghaderi M, Asadi P, Kouhirostamkolaei M, “Applying response surface methodology on the results of serial sequencing batch moving bed reactor”, SN Applied Sciences, 2020, 2 (1), 1-12. https://doi.org/10.1007/s42452-019-1894-1. Gu S, Wunder S, Lu Y, Ballauff M, Fenger R, Rademann K, Zaccone A, “Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles”, The Journal of Physical Chemistry C, 2014, 118 (32), 18618-18625. https://doi.org/10.1021/jp5060606. Hosseini SH, Borghei SM, “The treatment of phenolic wastewater using a moving bed bio-reactor”, Process biochemistry, 2005, 40 (3-4), 1027-1031. https://doi.org/10.1016/j.procbio.2004.05.002. Iben Ayad A, Luart D, Ould Dris A, Guénin E, “Kinetic analysis of 4-nitrophenol reduction by water-soluble palladium nanoparticles”, Nanomaterials, 2020, 10 (6), 1169. https://doi.org/10.3390/nano10061169. Khalegh R, Qaderi F, Optimization of the effect of nanoparticle morphologies on the cost of dye wastewater treatment via ultrasonic/photocatalytic hybrid process; Applied Nanoscience, 2019, 9, 1869-1889, https://doi.org/10.1007/s13204-019-00984-9. Kincannon DF, Stover EL, “Design methodology for fixed film reactors-RBC's and biological towers”, Civil Engineering for Practicing and Design Engineers, 1982, 2, 107-124. Kamal T, Asiri AM, Ali N, “Catalytic reduction of 4-nitrophenol and methylene blue pollutants in water by copper and nickel nanoparticles decorated polymer sponges”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 261, 120019. https://doi.org/10.1016/j.saa.2021.120019. Levin L, Carabajal M, Hofrichter M, Ullrich R, “Degradation of 4-nitrophenol by the white-rot polypore Trametes versicolor”, International Biodeterioration & Biodegradation, 2016, 107, 174-179. https://doi.org/10.1016/j.ibiod.2015.11.023. Minz S, Garg S, Gupta R, “Effect of Operating Parameters, Reaction Kinetics and Comparative Assessment of Fluidized-Bed Fenton Oxidation of 4-Nitrophenol”, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 2021, 40 (2), 539-550. https://doi.org/10.30492/ijcce.2020.40534 Ma YS, Huang ST, Lin JG, “Degradation of 4-nitrophenol using the Fenton process”, Water science and technology, 2000, 42 (3-4), 155-160. https://doi.org/10.2166/wst.2000.0373. Odegaard H, “Innovations in wastewater treatment: the moving bed biofilm process”, Water science and technology, 2006, 53 (9), 17-33. https://doi.org/10.2166/wst.2006.284. Shah L, Ali HSM, Bello BA, Khan SA, Anwar Y, Khan MS J, Khan SB, “Catalytic performance of the biosynthesized AgNps from Bistorta amplexicaule: antifungal, bactericidal, and reduction of carcinogenic 4-nitrophenol”, Green Processing and Synthesis, 2020, 9 (1), 259-267. https://doi.org/10.1515/gps-2020-0027. Sajadi SM, Kolo K, Abdullah SM, Hamad SM, Khalid HS, Yassein AT, “Green synthesis of highly recyclable CuO/eggshell nanocomposite to efficient removal of aromatic containing compounds and reduction of 4-nitrophenol at room temperature”, Surfaces and Interfaces, 2018, 13, 205-215. https://doi.org/10.1016/j.surfin.2018.08.006. Tamadoni A, Qaderi F, Optimization of soil remediation by ozonation for PAHs contaminated soils, Ozone: Science & Engineering, 2019, 41 (5), 454-472, https://doi.org/10.1080/01919512.2019.1615865. Teimouri M, Khosravi-Nejad F, Attar F, Saboury AA, Kostova I, Benelli G, Falahati M, “Gold nanoparticles fabrication by plant extracts: synthesis, characterization, degradation of 4-nitrophenol from industrial wastewater, and insecticidal activity–a review”, Journal of Cleaner Production, 2018, 184, 740-753. https://doi.org/10.1016/j.jclepro.2018.02.268. Van Haandel A, Van Der Lubbe J, “Handbook biological waste water treatment-design and optimisation of activated sludge systems”, Webshop Wastewater Handbook, 2007. Yavari SM, Qaderi F, “Determination of thermal pollution of water resources caused by Neka power plant through processing satellite imagery”, Environment, Development and Sustainability, 2020, 22 (3), 1953-1975. https://doi.org/10.1007/s10668-018-0272-2. Zhao R, Li Y, Ji J, Wang Q, Li G, Wu T, Zhang B, “Efficient removal of phenol and p-nitrophenol using nitrogen-doped reduced graphene oxide”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125866. https://doi.org/10.1016/j.colsurfa.2020.125866. | ||
آمار تعداد مشاهده مقاله: 238 تعداد دریافت فایل اصل مقاله: 122 |