تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,035 |
تعداد مشاهده مقاله | 52,538,410 |
تعداد دریافت فایل اصل مقاله | 15,242,143 |
ارزیابی ناهمگونی فضایی شاخص آشفتگی هیدرورسوبشناسی در زیرحوضههای سامیان | ||
هیدروژئومورفولوژی | ||
دوره 9، شماره 31، شهریور 1401، صفحه 136-117 اصل مقاله (1.68 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/hyd.2022.51186.1634 | ||
نویسندگان | ||
وحیده مرادزاده1؛ زینب حزباوی* 2؛ اباذر اسمعلی عوری3؛ رئوف مصطفیزاده4؛ شیرین زارعی5؛ نازیلا علائی6 | ||
1دانشجوی کارشناسی ارشد مهندسی آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
2University of Mohaghegh Ardabili, Ardabil, Iran | ||
3دانشگاه محقق اردبیلی | ||
4استادیار گروه منابع طبیعی، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی | ||
5دانش آموخته کارشناسی ارشد مهندسی آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران | ||
6دانشجوی دکتری علوم و مهندسی آبخیزداری، دانشکده منابع طبیعی، دانشگاه ارومیه، ارومیه، ایران | ||
چکیده | ||
شاخصهای بومشناختی به ابزارهای مهمی برای ارزیابی و پایش منابع طبیعی تبدیل شدهاند که درک رابطه بین فعالیتهای زیستشناسی و واکنش بومشناختی برای ساختار آنها ضروری است. از طرفی، فعالیتهای انسانی از طریق تغییرات در تولید رسوب، انتقال و ذخیرهسازی تأثیرات قابل توجهی بر تکامل چشمانداز دارند. لذا این امر در مدیریت جامعنگر حوضهها و اکوسیستمهای مختلف بایستی مورد توجه قرار گیرد. بر همین اساس، پژوهش حاضر با هدف ارزیابی ناهمگونی فضایی شاخص آشفتگی هیدرورسوبشناسی (HSDI) در زیرحوضههای سامیان واقع در بخش مرکزی استان اردبیل انجام شد. بدینمنظور، ابتدا عوامل انتقال رسوب (ST)، تنش هیدرولوژیکی (HS)، تغذیه آب زیرزمینی (Rec) و پتانسیل فرسایش خاک (SEP) برای 27 زیرحوضه مختلف مورد مطالعه محاسبه شد. در ادامه، وزندهی این عوامل با استفاده از روش آنتروپی شانون صورت گرفت. سپس با استفاده از میانگین وزنی شاخص آشفتگی هیدرورسوبشناسی (HSDI) محاسبه و پهنهبندی شد. نتایج نشان داد که مقادیر متوسط، حداکثر و حداقل مقدار شاخص HSDI در حوضه سامیان بهترتیب برابر 17/10، 67/45 و 20/0 بوده است. همچنین، طبق نتایج بهترتیب 67/87، 33/5، 32/5 و 68/1 درصد از مساحت حوضه در طبقات خیلیکم، کم، متوسط و زیاد از سطح آشفتگی دستهبندی شد. زیرحوضه 19 واقع در بخش شمالی، و زیرحوضههای 20 و 21 واقع در بخش مرکزی حوضه سامیان دارای بیشترین آشفتگی هستند، لذا برای انجام اقدامات مدیریتی در اولویت قرار میگیرند. چارچوب پژوهش حاضر بهعنوان ابزاری بالقوه برای حمایت از تصمیماتی که باید بر بهبود مدیریت منابع طبیعی متمرکز باشد، قابلیت کاربرد دارند. | ||
کلیدواژهها | ||
تولید رسوب؛ رژیم هیدرولوژیک؛ دخالت انسانی؛ سامیان؛ مدیریت منابع آب | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Asgari, E., Hosseini, S.Z., & Mostafazadeh, R. (2021). Determination of the Relationship and Spatial Variations of Discharge and Suspended Sediment Values in Watersheds of Ardabil Province, Geography and Development Iranian Journal, 18(61), 143-176. Esmali, A., & Abdollahi, Kh. (2011). Watershed Management and Soil Conservation. University Mohaghegh Ardabili Press. 574 p. Farajzadeh, Asl, M., Hodaei, A., Mollashahi, M., & Rajabi Rostam Abadi, N. (2017). The Analysis and Comparison of the Suspended Sediment in the Caspian Sea and Central Iran Drainage Basins, Hydrogeomorphology, 4(11), 59-81. Ghoreishi Gharetikan, S., Gharechelou, S., Mahjoobi, E., Golian, S., & Salehi, H. (2022). Evaluation of Available Surface Water Resources in Qarah Tikan Border Basin using Satellite Products and GIS, Water and Soil Management and Modelling, 2(1), 1-13. Golshan, M., Kavian, A., Esmali, A., & Ziegler, A. (2018). Modeling Runoff and Sediment Yield using of Hydro-Geomorphologic Characters in Samian Watershed, Ardabil Province, Iranian Journal of Watershed Management Science and Engineering, 12(43), 117-126. Jafari, T., Naemi, M., & Zakerian, (2018). Quantitative Assessment of Soil-Water Erosion with the EPM Model (Case Study: Badranloo Watershed), Geography and Environmental Planning, 29(2): 141-158. Kamangar, M., & Ghaderi, F. (2016). Investigating the Accuracy of Shannon Entropy Weighting Method in Determining the Appropriate Areas of Artificial Nutrition in Sarkhon plain, Iranian Soil and Water Research, 47 (2): 247-258. Mehri, S., Mostafazadeh, R., Esmali-Ouri, A., & Ghorbani, A. (2017). Spatial and Temporal Variations of Base Flow Index (BFI) for the Ardabil Province River, Iran, Earth and Space Physics, 43(3): 623-634. Mirsanjari, M.M., & Abedian, S (2019). Assessment and Environmental Zoning of Soil Erosion Potential using RUSLE Model (Case Study: Gharahsoo watershed), Journal of Environmental Studies, 44(4), 625-642. Nayyeri, H., Amani, K., & Ganjaeian, H. (2016). Survey the Tarval Drainage Watershed Hydro Geomorphology and Hydrology Indicators, Hydrogeomorphology, 3(7), 19-38. Refahi, H.G. (1385). Wind Erosion and Conservation. University of Tehran Press, 561 p. Rezaie, H., Garebaghi, P., Khani Temeliyeh, Z., & Mirabbasi-Najafabadi, R. (2022). Monthly Flow Analysis of Sefidrood River using Chaos Theory, Water and Soil Management and Modelling, 2(1), 27-41. Saeediyan, H., & Moradi, H. (2022). Comparing of the Runoff and Sediment of Different Land Uses in Gachsaran and Aghajari Formations under Rain Simulation, Water and Soil Management and Modelling, 2(2), 55-68. Zarei, Sh., Hazbavi, Z., Mostafazadeh, R., & Esmali-Ouri, A. (2020). Vulnerability Comparison of Samian Sub-watersheds based on Climate Change Components, Natural Geography Research, 52(2), 217-236. Alcázar, J., Woodard, P.M., & Rothwell, R.L. (2002). Soil Disturbance and the Potential for Erosion after Mechanical Site Preparation, Northern Journal of Applied Forestry, 19(1), 5-13. Averill, R. D., Larson, L., Saveland, J., Wargo, P., Williams, J., & Bellinger, M. (1994). Disturbance Processes and Ecosystem Management. Washington, DC: U.S. Department of Agriculture, Forest Service. 19 p. Biggs, B.J., Tuchman, N.C., Lowe, R.L., & Stevenson, R.J. (1999). Resource Stress Alters Hydrological Disturbance Effects in a Stream Periphyton Community, Oikos, 95-108. Dai, J.J., Lorenzato, S., & Rocke, D.M. (2004). A Knowledge-Based Model of Watershed Assessment for Sediment, Environmental Modelling & Software, 19(4), 423-433. Danneyrolles, V., Dupuis, S., Fortin, G., Leroyer, M., de Römer, A., Terrail, R., & Arseneault, D. (2019). Stronger Influence of Anthropogenic Disturbance than Climate Change on Century-Scale Compositional Changes in Northern Forests, Nature Communications, 10(1), 1-7. de Barros, C.A.P., Minella, J.P.G., Dalbianco, L., & Ramon, R. (2014). Description of Hydrological and Erosion Processes Determined by Applying the LISEM Model in a Rural Catchment in Southern Brazil, Journal of Soils and Sediments, 14(7), 1298-1310. Durães, M.F., & Mello, C.R.D. (2014). Hydrosedimentologic Disturbance Index Applied to Watersheds of Minas Gerais State, Ciência e Agrotecnologia, 38, 61-67. Folster, H., Khanna, P.K., Nambiar, E.K.S., & Brown, A.G. (1997). Dynamics of nutrient supply in plantation soils. P. 339-378 in Management of soil, nutrients and water in tropical plantation forests, Nambiar, E.K.S. (ed.). Aciar Monogr. No. 43. Canberra, Australia. Guiraud, D.M.C., Lenzi, E., Luchese, E.B., & Fávero, L.O.B. (2004), Loss of Macronutrients (N, P, K) in the Hydrographic Basin of the River Ivaí, an Affluent of the River Paraná. Brazilian Archives of Biology and Technology, 47, 649-658. Humphries, H.C., Bourgeron, P.S., & Reynolds, K.M. (2008). Suitability for Conservation as a Criterion in Regional Conservation Network Selection. Biodiversity and Conservation, 17(3), 467-492. Huston, A. (1994). The Coexistence of Species on Changing Landscapes. Page Biological Diversity, 483-557. Kemp, D., Sadler, P., & Vanacker, V. (2020). The Human Impact on North American Erosion, Sediment Transfer, and Storage in a Geologic Context, Nature Communications, 11, 6012. Margules, C.R. & Pressey, R.L. (2000). Systematic Conservation Planning. Nature, 405(6801):243-253. Margules, C.R. & Sarkar, S. (2007). Systematic Conservation Planning. Cambridge: Cambridge University Press, 278 p. Marques, P.H.C., Oliveira, H.T., & Machado, E.C. (2003), Limnological Study of Piraquara River (Upper Iguaçu Basin): Spatiotemporal Variation of Physical and Chemical Variables and Watershed Zoning. Brazilian Archives of Biology and Technology, 46, 383–394. Moon, D.E. (1988). Approaches to predicting soil degradation. P. 138–152 in Proc. of the 10th B.C. Soil Science Workshop, B.C. Min. For. Victoria, B.C., Canada Nelson, E.J, &. Booth, D.B. (2002). Sediment Sources in an Urbanizing, Mxed Land-use Watershed. Journal of Hydrology, 264, 51–68. Netto, S. A., & Lana, P. (1994). Effects of sediment disturbance on the structure of benthic fauna in a subtropical tidal creek of southeastern Brazil. Marine Ecology-Progress Series, 106, 239-239. Peterson, C.G. (1996). Response of Benthic Algal Communities to Natural Physical Disturbance. In: Stevenson, R.J., Bothwell, M. L. and Lowe, R. L. (eds), Algal ecology: freshwater benthic ecosystems. Academic Press, San Diego, CA, pp. 375-402. Picket, S.T.A., & White, P.S. (1985). The Ecology of Natural Disturbance as Patch Dynamics, New York: Academic Press INC, 470p. Schmidt, M.G., Macdonald, S.E., & Rothwell, R.L. (1996). Impacts of Harvesting and Mechanical Site Preparation on Soil Chemical Properties of Mixed-Wood Boreal Forest Sites in Alberta. Canadian Journal of Soil Science, 76, 531–540. Shannon, C.E. (1948). A mathematical theory of communication, Bell System Technical Journal, 27(3), 379-423. Silva, A.M.D., & Schulz, H.E. (2007). Hydrosedimentological dynamic on Água Fria watershed. Brazilian Archives of Biology and Technology, 50, 861-870. Silva, M.A.L., Calasans, C.F., Ovalle, A.R.C., & Rezende, C.E. (2001). Dissolved nitrogen and phosphorus dynamics in the lower portion of the Paraíba do Sul River, Campos dos Goytacazes, R.J, Brazilian Archives of Biology and Technology, 44, 365–371. Tucci, C.E.M. (1997). Hidrologia: Ciência. E Aplicação. Editora da Universidade/ABRH, Porto. Alegre, R.S. 450p (Abstract in English). Turner, M.G. (1989). Landscape Ecology: the Effect of pattern on process. Annual Review of Ecology and Systematics, 20:171-197. Turner, M.G., & Gardner, R.H. (2015). Landscape ecology in theory and practice: pattern and process. Springer. Vieira, P.M.S., & Studart, T.M.C. (2009). Proposta metodológica para o desenvolvimento de um índice de sustentabilidade hidro-ambiental de áreas serranas no semiárido brasileiro – estudo de caso: Maciço de Baturité, Ceará. Revista Brasileira de Recursos Hídricos, 14(4), 125-136 (Abstract in English). Zanandrea, F., Michel, G.P., Kobiyama, M., Censi, G., Abatti, B.H. (2021). Spatial-Temporal Assessment of Water and Sediment Connectivity through a Modified Connectivity Index in a Subtropical Mountainous Catchment. Catena, 204, 105380. | ||
آمار تعداد مشاهده مقاله: 485 تعداد دریافت فایل اصل مقاله: 321 |