تعداد نشریات | 44 |
تعداد شمارهها | 1,303 |
تعداد مقالات | 16,020 |
تعداد مشاهده مقاله | 52,489,938 |
تعداد دریافت فایل اصل مقاله | 15,217,481 |
تعیین فراسنجههای تخمیر و گوارشپذیری تفاله گوجهفرنگی در مقایسه با سبوسگندم در شرایط برونتنی | ||
پژوهش های علوم دامی (دانش کشاورزی) | ||
دوره 33، شماره 2، شهریور 1402، صفحه 93-105 اصل مقاله (489.01 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22034/as.2022.41844.1583 | ||
نویسندگان | ||
زهرا امینی فرد* 1؛ علی کیانی2 | ||
1گروه علوم دامی دانشکده کشاورزی دانشگاه لرستان خرم آباد | ||
2عضو هیئت علمی دانشگاه لرستان | ||
چکیده | ||
زمینه مطالعاتی: ارزش غذایی تفاله گوجهفرنگی به عنوان یک فراورده فرعی کشاورزی جهت استفاده در تغذیه دام ارزیابی شد. هدف: این تحقیق به منظور تعیین فراسنجههای تولید گاز و گوارشپذیری تفاله گوجهفرنگی در مقایسه با سبوسگندم در شرایط برونتنی انجام شد. روش کار: ابتدا ترکیبات شیمیایی و فراسنجههای تولید گاز تفاله گوجهفرنگی و سبوس گندم تعیین شدند. سپس تفاله گوجهفرنگی با سطوح صفر، 5/2، 5، 5/7 و 10 درصد (بر اساس مادهخشک) جایگزین سبوس گندم در جیره برههای پرواری شد و اثر این جایگزینی بر گوارشپذیری شکمبهای مادهآلی، انرژی قابلمتابولیسم و فراسنجههای تخمیر شامل pH، نیتروژن آمونیاکی، تولید پروتئینمیکروبی و اسیدهایچرب فرار کوتاهزنجیر مورد بررسی قرار گرفت. نتایج: مقادیر مادهآلی، خاکستر، پروتئینخام، عصارهاتری، الیافنامحلول در شوینده خنثی و اسیدی تفاله گوجهفرنگی بهترتیب 1/94، 9/5، 2/17، 1/12، 63 و 42 درصد مادهخشک بود. در آزمایش حاضر تفاله گوجهفرنگی در مقایسه با سبوس گندم دارای مقادیر بیشتر پروتئینخام، عصاره اتری، الیافنامحلول در شوینده خنثی و الیافنامحلول در شوینده اسیدی نسبت به سبوس گندم بود. تفاله گوجهفرنگی در مقایسه با سبوس گندم پتانسیل تولید گاز، نرخ تولید گاز، گوارشپذیری مادهخشک و مادهآلی کمتری داشت (05/0>P) ولی ضریب تفکیک و تولید پروتئینمیکروبی تفاله گوجهفرنگی بیشتر از سبوس گندم بود. با اینحال pH و نیتروژن آمونیاکی تفاوت معنیداری وجود نداشت (05/0<P). افزایش سطح تفاله گوجهفرنگی در جیره باعث افزایش تولید پروتئینمیکروبی شد (05/0>P) ولی روی تولید گاز، انرژی قابلمتابولیسم و فراسنجههای تخمیری تاثیر معنیداری نداشت (05/0>P). نتیجهگیری نهایی: بهطور کلی استفاده از تفاله گوجهفرنگی تا 10 درصد مادهخشک در جیره بره پرواری به صورت جایگزین با سبوس گندم تاثیر منفی بر فراسنجههای تخمیر شکمبهای نداشت. بنابراین با توجه به ترکیبات شیمیایی و قیمت ارزانتر آن نسبت به سبوس گندم، استفاده از تفاله گوجهفرنگی تا 10 درصد مادهخشک در جیره بره پرواری به صورت جایگزین با سبوس گندم میتواند در کاهش هزینه جیره مفید باشد. | ||
کلیدواژهها | ||
بره پرواری؛ پروتئینمیکروبی؛ تخمیر؛ تفاله گوجهفرنگی؛ سبوسگندم؛ ضریبتفکیک | ||
مراجع | ||
Abubakr AR, Alimon AR, Yaakub H, Abdullah N and Ivan M, 2013. Digestibility, rumen protozoa, and ruminal fermentation in goats receiving dietary palm oil by-products. Journal of the Saudi Society of Agricultural Sciences 12: 147–154.
Abushita A, Daood H and Biacs P, 2000. Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. Journal of Agricultural and Food Chemistry 48(6):2075-2081.
Aghajanzadeh-Golshani A, Maheri-Sis N, Mirzaei-Aghsaghali A and Baradaran-Hasanzadeh A, 2010. Comparison of nutritional value of tomato pomace and brewer's grain for ruminants using in vitro gas production technique. Asian Journal of Animal Veterinary Advances 5(1):43-51.
Anonymous, 2019. Information and Communication Technology Center of the Ministry of Jihad Agriculture 2: 401
Association of Official Analytical Chemists, 1990. Official methods of analysis, K. Helrich, 15th ed., AOAC, Arlington, VA.
Barzamini H, MostafalooY, Bayat Kouhsar J and Ghanbari F, 2017. Investigation of chemical composition, fermentation characteristics and gas production of tomato pomace ensiled with sugar beet pulp and dried citrus pulp. Livestock Research (Quarterly). 5(2): 1-15.
Besharati M, Taghizadeh A, Janmohammadi H and Moghadam GHA, 2008. Evaluation of some by-products using in situ and in vitro gas production techniques. American Journal of Animal Veterniary Sciences 3(1): 7-12.
Blummel M and Ørskov ER, 1993. Comparison of in vitro gas production and nylon bag degradability of roughages in predicting feed intake in cattle. Animal Feed Science Technology 40: 109-119.
Blümmel M, Steingaβ H and Becker K, 1997. The relationship between in vitro gas production, in vitro microbial biomass yield and 15 N incorporation and its implications for the prediction of voluntary feed intake of roughages. British Journal of Nutrition 77(6): 911-921.
Broderick G and Kang J, 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of dairy science 63(1): 64-75.
Cámara M, Del Valle M, Torija ME and Castilho C, 2001. Fatty acid composition of tomato pomace. Acta Horticulturae 542: 175-181.
Choi SH, Kim DS, Kozukue N, Kim HJ, Nishitani Y, Mizuno M, Levin CE and Mendel F, 2014. Protein, free amino acid, phenolic, β-carotene, and lycopene content, and antioxidative and cancer cell inhibitory effects of 12 greenhouse-grown commercial cherry tomato varieties. Journal of Food Composition and Analysis 34, 115-127.
Correia C, Alfaia C, Madeira M, Lopes P, Matos T, Cunha L, Prates J and Freire J, 2017. Dietary inclusion of tomato pomace improves meat oxidative stability of young pigs. Journal of Animal Physiology and Animal Nutrition 101(6): 1215-1226.
Del Valle M, Cámara M and Torija ME, 2006. Chemical characterization of tomato pomace. Journal of the Science of Food and Agriculture 86(8): 1232-1236.
Denek N and Can A, 2006. Feeding value of wet tomato pomace ensiled with wheat straw and wheat grain for Awassi sheep. Small Ruminant Research 65(3): 260-265.
Doce RR, Hervás G, Belenguer A, Toral PG, Giráldez FJ and Frutos P, 2009. Effect of the administration of young oak (Quercus pyrenaica) leaves to cattle on ruminal fermentation. Animal Feed Science and Technology 150: 75–85.
Elferink E, Nonhebel S and Moll H, 2008. Feeding livestock food residue and the consequences for the environmental impact of meat. Journal of Cleaner Production 16(12): 1227-1233.
Getachew G, Makkar H and Becker K, 2002. Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. The Journal of Agricultural Sciences 139(3): 341-352.
Kara K, 2016. Effect of dietary fiber and condensed tannins concentration from various fibrous feedstuffs on in vitro gas production kinetics with rabbit fecal inoculum. Journal of Animal and Feed Sciences, 25, 266-272.
Le Gall G, Colquhoun IJ, Davis AL, Collins GJand Verhoeyen ME, 2003. Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. Journal of Agricultural and Food Chemistry 51(9): 2447-2456.
Menke KH and Steingass H, 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development 28: 7-55.
Mirzaei-Aghsaghali A, Maheri-sis N, Mansouri H, Razeghi ME, Safaei AR, Aghajanzadeh-Golshani A and Alipoor K, 2011. Estimation of the nutritive value of tomato pomace for ruminant using in vitro gas production technique. African Journal of Biotechnology 10(33): 6251-6256.
Nitipot P and Sommart K, 2003. Evaluation of ruminant nutritive value of cassava starch industry by products, energy feed sources and rough ages using in vitro gas production technique. In: Proceeding of Annual Agricultural Seminar for year 2003, 27-28 January, KKU. Pp: 179-190.
NRC, 2007. National Research Council, Nutrient requirements of small ruminants: Sheep, Goats, Cervids, and New World Camelids. Washington (DC, USA): National Academy of Sciences
Omar MIM, 2010. Utilization of fleabane (Conyza bonariensis) in fattening rations of awassi lambs. masters of animal production, Faculty of Graduate Studies, An-Najah National University, Nablus, Palestine.
Ørskov ER and McDonald I, 1979. The estimation of protein degradability in the rumen from incubation measurements weighed according to rate of passage. Journal of Agricultural Science 92: 499–503.
Peiretti P, Gai F, Rotolo L, Brugiapaglia A and Gasco L, 2013. Effects of tomato pomace supplementation on carcass characteristics and meat quality of fattening rabbits. Meat science 95(2): 345-351.
Qingling W, Li Z, Chunmian M and Shiling L, 2014. Study on the physiochemical properties and structural characteristics of the dietary fiber in tomato pomace. Modern Food Science and Technology 30: 60-64.
Safari R, Valizadeh R, Bayat Kouhsar J, Nasserian AA and Tahmasebi AA, 2011. The effect of feeding diets containing dried or ensiled tomato pomace on Holstein dairy cattle performance. Iranian Journal of Animal Science Research 2: 91-99.
Tahmasbi R and Dayani O, 2015. Feeding mixed corn plant and different levels of tomato pomace silageand its effect on performance of Holstein cows. Journal. of Ruminant Research 3(1): 71-86.
Tieman TT, Avila P, Ramirez G, Lascano CE, Kreuzer M and Hess HD, 2008. In vitro ruminal fermentation of tanniniferous tropical plants: Plant specific tannin effects and counteracting of PEG. Animal Feed Science and Technology 146: 222-241.
Valenti B, Luciano G, Pauselli M, Mattioli S, Biondi L, Priolo A, Natalello A, Morbidini L and Lanza M, 2018. Dried tomato pomace supplementation to reduce lamb concentrate intake: Effects on growth performance and meat quality. Meat Science 145: 63-70.
Van Soest Pv, Robertson J and Lewis B, 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74(10): 3583-3597.
Vercoe PE, Makkar HP and Schlink AC, 2010. In vitro screening of plant resources for extra-nutritional attributes in ruminants: nuclear and related methodologies. Springer.
Yuangklang C, Vasupen K, Wongsuthavas S, Bureenok S, Panyakaew P, Alhaidary A, Mohamed H and Beynen A, 2010. Effect of replacement of soybean meal by dried tomato pomace on rumen fermentation and nitrogen metabolism in beef cattle. American Journal of Agricultural and Biological Sciences 5(3): 256-260.
Ziaei N and Molaei S, 2010. Evaluation of nutrient digestibility of wet tomato pomace ensiled with wheat straw compared to alfalfa hay in kenilani sheep. Journal of Animal and Veterinary Advances 9(4): 771-773. | ||
آمار تعداد مشاهده مقاله: 483 تعداد دریافت فایل اصل مقاله: 198 |